PETROSAFE

Petroleum Safety & Environmental Services Co.

An Egyptian Oil Sector Company

بتروسيف

شركــة الخدمات البترولية للسلامـة والبيئـة إحدى شركات قطاع البترول

The Egyptian Natural Gas Holding Company "EGAS"

Quantitative Risk Assessment "QRA" Study For Atfih Pressure Reduction Station

Prepared By
Petroleum Safety and Environmental Services Company
PETROSAFE

August 2018

PETROSAFE

EGAS

Page 1 of 110

Date: Aug. 2018

Egyptian Natural Gas Holding Company "EGAS"

l ma	lo did Bila	C/ 1 F /	uCl N. D	D - 1 4'
Title	Quantitative Risk Assessment Study For Atfih New Pressure Reduction Station – Giza Governorate			
Customer	Egyptian Natural Gas Holding C	ompany "EG	AS"	
Customer Reference	EGAS/QRA/02/2015-MG/MS	11 °V		
Confidentiality, Copyright and Reproduction	This document has been prepared by PETROSAFE in connection with a contract to supply services and is submitted only on the basis of strict confidentiality. The contents must not be disclosed to third parties other than in accordance with the terms of the contract.			
Report Number	EGAS.HSE.QRA.Study.010/Atfi-TownCPHAST.7.21/UAN.166,341-PETROSAF			WS-DNV-
Report Status	Revision 0			
	PETROSAFE 6w/4 Hassan Nassar St Takseem El-Laselky - New Maadi, Cairo, Egypt Telephone: +(202) 2517 6935 / 2517 6936 / 2517 6937 Facsimile: +(202) 2517 6938 / 2517 6958 e-mail: mohamed.ghazaly@petrosafe.com.eg mohamed.samy@petrosafe.com.eg			
	Name	Signature		Date
Team Work	Eng. Wael Said HSE Auditing Section Head	W-7/17	PETROSAFE	01/08/2018
	Chem. Mohamad Samy Safety Studies Dept. Head	48 any	PETROSAFE	02/08/2018
	Geo. Mohamad Al-Ghazaly Saf. & Env. Affairs Gen. Mgr.	AL	PETROSAFE	05/08/2018
Reviewed by	Dr. Emad Kelany Safety Asst. Gen. Mgr.	2018	EGAS	/08/2018
	Eng. Ahmad Farag World Bank Project Gen. Mgr.		EGAS	/08/2018
Approved by	Sameh Abd Al Razek Asst. Chairman for Health & Safety		EGAS	/08/2018
	Eng. Mostafa Helal Vice Chairman for Planning & Gas Projects		EGAS	/06/2018
Distribution	CAC			
• File: E	GAS GAS / PETROSAFE GAS / PETROSAFE			

PETROSAFE

Page 2 of 110

Date: Aug. 2018

Document Title: Quantitative Risk Assessment "QRA" Study For Atfih Pressure Reduction & Metering Station

CONTENTS

Executive Summary	08/110
Introduction	17/110
Technical Definitions	18/110
Objectives	23/110
Quantitative Risk Assessment Study Scope	24/110
Quantitative Risk Assessment "QRA" Studies	25/110
Method of Assessment	25/110
1.0- General Method Used	25/110
2.0- Risk Assessment	25/110
Modeling the Consequences	27/110
Criterion for Risk Tolerability	28/110
Personnel Vulnerability and Structural Damage	31/110
Quantification of the Frequency of Occurrence	34/110
Identification of Scenarios Leading to Selected Failures	34/110
Relevant Weather Data for the Study	35/110
- Weather Data	35/110
- Stability Categories	39/110
Atfih PRMS Description	40/110
Background	40/110
PRMS Location Coordinates	40/110
PRMS Brief Description	40/110
Pressure Reduction and Metering Station (PRMS)	45/110
Process Condition Data	
Pressure Reduction Station Mechanical Works	
Filtration Stage	
Heating Stage	
Reduction Stage	46/110
	· · · · · · · · · · · · · · · · · · ·

Prepared By: **PETROSAFE**

Page 3 of 110

Date: Aug. 2018

Measuring Stage	46/110
Odorizing Stage	47/110
Outlet Stage	47/110
Operating Philosophy and Control	47/110
Shutdown and Isolation Philosophy	47/110
Fire Protection Facilities	47/110
Gas Odorant Specifications	48/110
Health Hazards	48/110
Inhalation	48/110
Skin Contact	48/110
Eye Contact	48/110
Ingestion	48/110
Hygiene Standards and Limits	48/110
Fire and Explosion Hazards	49/110
Emergency Response Plan "ERP"	49/110
Analytical Results of Consequence Modeling	50/110
1.0- Pressure Reduction Station Inlet Pipeline (6 inch)	50/110
1/1- Consequence Modeling for 1 inch (Pin Hole) Gas Release	50/110
1/2- Consequence Modeling for 3 inch (Half Rup.) Gas Release	53/110
1/3- Consequence Modeling for 6 inch (Full Rup.) Gas Release	57/110
2.0- Pressure Reduction Station Outlet Pipeline (8 inch)	61/110
2/1- Consequence Modeling for 1 inch (Pin Hole) Gas Release	61/110
2/2- Consequence Modeling for 4 inch (Half Rup.) Gas Release	65/110
2/3- Consequence Modeling for 8 inch (Full Rup.) Gas Release	70/110

PETROSAFE

Egyptian Natural Gas Holding Company "EGAS"

Page 4 of 110

Date: Aug. 2018

Document Title:	Quantitative Risk Assessment "QRA" Study For Atfih Pressure Reduction & Met	ering Station	
3.0- Pressu	re Reduction Station Odorant Tank (Spotleak)	76/110	
4.0- Pressu	4.0- Pressure Reduction Station Off-take Pipeline (6 inch)		
4/1- Consec	quence Modeling for 1 inch (Pin Hole) Gas Release	82/110	
4/2- Consec	quence Modeling for 3 inch (Half Rup.) Gas Release	85/110	
4/3- Consec	quence Modeling for 6 inch (Full Rup.) Gas Release	88/110	
Individual	91/110		
Risk Ca	91/110		
• Event 7	94/110		
Summary	104/110		
Recommen	110/110		
Tables			
Table (1)	Description of Modeling of the Different Scenario	27/110	
Table (2)	Proposed Individual Risk (IR) Criteria (per person/year) 29/110		

Tables			
Table (1)	Description of Modeling of the Different Scenario	27/110	
Table (2)	Proposed Individual Risk (IR) Criteria (per person/year)	29/110	
Table (3)	Criteria for Personnel Vulnerability and Structural Damage	31/110	
Table (4)	Heat Radiation Effects on Structures (World Bank)	32/110	
Table (5)	Heat Radiation Effects on People	32/110	
Table (6)	Effects of Overpressure	33/110	
Table (7)	Annual Average Temperature, Relative Humidity and Wind Speed / Direction		
Table (8)	Mean of Monthly Air Temperature (°C)	36/110	
Table (9)	Mean of Monthly Wind Speed (m/sec)		
Table (10)	Mean of Monthly Morning / Evening Relative Humidity	36/110	
Table (11)	Pasqual Stability Categories	39/110	
Table (12)	Relationship between Wind Speed and Stability	39/110	
Table (13)	Sets of Weather Conditions Initially Selected for this Study	39/110	
Table (14)	Process Conditions / Gas Components & Specifications	45/110	
Table (15)	Dispersion Modeling for Inlet – 1" / 6" Gas release 50/110		

Prepared By: **PETROSAFE**

Egyptian Natural Gas Holding Company "EGAS"

Page 5 of 110

Date: Aug. 2018

Table (16)	Dispersion Modeling for Inlet – 3" / 6" Gas release		
Table (17)	Dispersion Modeling for Inlet – 6" Gas release		
Table (18)	Dispersion Modeling for Outlet – 1" / 8" Gas release	61/110	
Table (19)	Dispersion Modeling for Outlet – 4" / 8" Gas release	65/110	
Table (20)	Dispersion Modeling for Outlet – 8" Gas release	70/110	
Table (21)	Dispersion Modeling for Odorant Tank (Spotleak)	76/110	
Table (22)	Dispersion Modeling for Off-take – 1" / 6" Gas release	82/110	
Table (23)	Dispersion Modeling for Off-take – 3" / 6" Gas release	85/110	
Table (24)	Dispersion Modeling for Off-take – 6" Gas release	88/110	
Table (25)	Failure Frequency for Each Scenario	93/110	
Table (26)	Off-take 6" / Inlet 6" / Outlet 8" Pipeline Scenarios (Pin Hole Crack – 1" Release) – Event Tree Analysis	96/110	
Table (27)	Off-take 6" / Inlet 6" / Outlet 8" Pipeline Scenarios (Half Rupture Release) – Event Tree Analysis		
Table (28)	Off-take 6" / Inlet 6" / Outlet 8" Pipeline Scenarios (Full Rupture Release) – Event Tree Analysis		
Table (29)	Odorant Tank Release – Event Tree Analysis		
Table (30)	Total Frequencies for Each Scenario		
Table (31)	Summarize the Risk on Workers / Public (Occupancy)		
Table (32)	Individual Risk (IR) Calculation for the Workers		
Table (33)	Individual Risk (IR) Calculation for the Public		
Figures			
Figure (1)	Risk Assessment Framework		
Figure (2)	Criteria for Individual Risk Tolerability		
Figure (3)	Proposed Individual Risk Criteria		
Figure (4)	Monthly Variations of the Maximum Temperature for Giza Governorate		
Figure (5)	Monthly Variations of the Wind Speed for Giza Governorate		

PETROSAFE

Page 6 of 110

Date: Aug. 2018

Figure (6)	Wind Rose for Giza Governorate	37/110
Figure (7)	Monthly Variations of the Sunny, Cloudy and Precipitation days for Giza Governorate	38/110
Figure (8)	Atfih PRMS and Off-Take Point Plot Plan Plotted on Google Earth Photo	41/110
Figure (9)	Atfih PRMS General Layout (TownGas Data)	42/110
Figure (10)	Atfih Pressure Reduction Station and Surroundings Plotted on Google Earth Photo	43/110
Figure (11)	Atfih PRMS's Off-Take Point and Surroundings Plotted on Google Earth Photo	44/110
Figure (12)	Gas Cloud Side View (UFL/LFL) (1" hole in 6" Inlet Pipeline)	51/110
Figure (13)	Heat Radiation Contours from Jet Fire (1" hole in 6" Inlet Pipeline)	52/110
Figure (14)	Gas Cloud Side View (UFL/LFL) (3" hole in 6" Inlet Pipeline)	54/110
Figure (15)	Heat Radiation Contours from Jet Fire (3" hole in 6" Inlet Pipeline)	55/110
Figure (16)	Late Explosion Overpressure Waves (3" hole in 6" Inlet Pipeline)	56/110
Figure (17)	Gas Cloud Side View (UFL/LFL) (6" Inlet Pipeline Full Rupture)	58/110
Figure (18)	Heat Radiation Contours from Jet Fire (6" Inlet Pipeline Full Rupture)	59/110
Figure (19)	Late Explosion Overpressure Waves (6" Inlet Pipeline Full Rupture)	60/110
Figure (20)	Gas Cloud Side View (UFL/LFL) (1" hole in 8" Outlet Pipeline)	62/110
Figure (21)	Heat Radiation Contours from Jet Fire (1" hole in 8" Outlet Pipeline)	63/110
Figure (22)	Early Explosion Overpressure Waves (1" hole in 8" Outlet Pipeline)	64/110
Figure (23)	Gas Cloud Side View (UFL/LFL) (4" hole in 8" Outlet Pipeline)	66/110

Prepared By: **PETROSAFE**

Egyptian Natural Gas Holding Company "EGAS"

Page 7 of 110

Date: Aug. 2018

Figure (24)	Heat Radiation Contours from Jet Fire (4" hole in 8" Outlet	67/110
1 iguic (24)	Pipeline)	07/110
Figure (25)	Early Explosion Overpressure Waves (4" hole in 8" Outlet Pipeline)	68/110
Figure (26)	Late Explosion Overpressure Waves (4" hole in 8" Outlet Pipeline)	69/110
Figure (27)	Gas Cloud Side View (UFL/LFL) (8" Outlet Pipeline Full Rupture)	71/110
Figure (28)	Heat Radiation Contours from Jet Fire (8" Outlet Pipeline Full Rupture)	72/110
Figure (29)	Early Explosion Overpressure Waves (8" Outlet Pipeline Full Rupture)	73/110
Figure (30)	Late Explosion Overpressure Waves (8" Outlet Pipeline Full Rupture)	74/110
Figure (31)	Heat Radiation Contours from Fireball (8" Outlet Pipeline Full Rupture)	75/110
Figure (32)	Vapor Cloud (UFL/LFL) Side View Graph (Odorant leak)	77/110
Figure (33)	Heat Radiation Contours - Jet Fire Graph (Odorant Leak)	78/110
Figure (34)	Heat Radiation Contours - Jet Fire on Site (Odorant Leak)	78/110
Figure (35)	Late Explosion Overpressure Waves Graph (Odorant Leak)	80/110
Figure (36)	Late Explosion Overpressure Waves on Site (Odorant Leak)	80/110
Figure (37)	Gas Cloud Side View (UFL/LFL) (1" hole in 6" Off-take Pipeline)	83/110
Figure (38)	Heat Radiation Contours from Jet Fire (1" hole in 6" Off-take Pipeline)	84/110
Figure (39)	Gas Cloud Side View (UFL/LFL) (3" hole in 6" Off-take Pipeline)	86/110
Figure (40)	Heat Radiation Contours from Jet Fire (3" hole in 6" off-take Pipeline)	87/110
Figure (41)	Gas Cloud Side View (UFL/LFL) (6" off-take Pipeline Full Rupture)	89/110
Figure (42)	Heat Radiation Contours from Jet Fire (6" off-take Pipeline Full Rupture)	90/110
Figure (43)	Evaluation of Individual Risk	103/110

PETROSAFE

EGAS
Egyptian Natural Gas Holding Company "EGAS"

Page 8 of 110

Date: Aug. 2018

Document Title: Quantitative Risk Assessment "QRA" Study For Atfih Pressure Reduction & Metering Station

Executive Summary

This report summarizes the Quantitative Risk Assessment (QRA) analysis study undertaken for the New Natural Gas Pressure Reduction & Metering Station "PRMS" with Odorant at Atfih City – Giza Governorate – Egypt. The PRMS owned by The Egyptian Natural Gas Holding Company "EGAS" and operated by Egyptian Company for Natural Gas Distribution in Cities "TownGas".

The scope of work includes performing frequency assessment, consequence modeling analysis and Quantitative Risk Assessment of Atfih PRMS in order to assess its impacts on the surroundings.

The main objective of the Quantitative Risk Assessment (QRA) study is to demonstrate that Individual Risk "IR" for workers and for public fall within the ALARP region of Risk Acceptance Criteria, and the new Atfih PRMS does not lead to any unacceptable risks to workers or the public.

QRA Study has been undertaken in accordance with the methodology outlined in the UKHSE as well as international regulations and standards.

QRA starts by Hazard Identification (HAZID) study, which determines the Major Accident Hazards (MAH) that requires consequence modelling, frequency analysis, and risk calculation.

In order to perform consequence-modelling analysis of the potential hazardous scenarios resulting from loss of containment, some assumptions and design basis have been proposed. Three scenarios of the release have been proposed:

- 1. Gas Release from the inlet / outlet pipeline.
- 2. Gas Release from the off-take point.
- 3. Leak from odorant tank.

The QRA has been performed using DNV Phast software (Ver. 7.21) for consequence modelling of different types of hazardous consequences.

Weather conditions have been selected based on wind speed and stability class for the area detailed weather statistics.

The worst case weather conditions has been selected represented by wind speed of 4 m/s and stability class "D" representing "Neutral" weather conditions, in order to obtain conservative results. The prevailing wind direction is North (N) & North North East (NNE).

PETROSAFE

Page 9 of 110

Date: Aug. 2018

Egyptian Natural Gas Holding Company "EGAS"

As per results from modeling the consequences of each scenario, the following table summarize the study, and as follows:

Event	Scenario	Effects		
Pin hole (1") gas release 6" inlet pipeline				
	Gas cloud UFL LFL 50 % LFL	The modeling shows that the gas cloud effects will be limited inside the PRMS boundary.		
	Heat radiation / Jet fire 9.5 kW/m ² 12.5 kW/m ²	The modeling shows that the heat radiation value of 4 kW/m² will be limited inside the PRMS boundary. The values of 9.5, 12.5, 25 & 37,5 kW/m² not determined by the software due to small amount of the gas released.		
	Early explosion 0.020 bar 0.137 bar 0.206 bar	N/D		
	Late explosion 0.020 bar 0.137 bar 0.206 bar	N/D		
Half Rupture (3") gas rel	ease 6" inlet pipeline			
	Gas cloud UFL LFL 50 % LFL	The modeling shows that the gas cloud (50 % LFL) will extend outside the PRMS from the north side downwind.		
	Heat radiation / Jet fire 9.5 kW/m ² 12.5 kW/m ²	All values will extend outside the N fence downwind with various distances to 25 (1.6 kW/m²).		
	Early explosion 0.020 bar 0.137 bar 0.206 bar	N/D		
	Late explosion 0.020 bar 0.137 bar 0.206 bar	The modeling shows that the value of 0.020, 0.137 bar and 0.206 bar will extended outside the PRMS boundary from north and east sides reaching the outside road downwind (north side).		

PETROSAFE

EGAS

Page 10 of 110

Date: Aug. 2018

Egyptian Natural Gas Holding Company "EGAS"

Event	Scenario	Effects
Full Rupture gas release	6" inlet pipeline	•
•	Gas cloud UFL LFL 50 % LFL	The modeling shows that the gas cloud effects (LFL & 50 % LFL) will extend outside the N fence reaching a distance of about 74 m from the north fence downwind.
	Heat radiation / Jet fire 9.5 kW/m ² 12.5 kW/m ²	The modeling shows that the heat radiation values will extend outside the PRMS north fence reaching a distance from 5 to 45 meters downwind. The security office will be effected from 1.6 and 4 kW/m² crosswind.
	Early explosion 0.020 bar 0.137 bar 0.206 bar	N/D
	Late explosion 0.020 bar 0.137 bar 0.206 bar	The modeling shows that the value of 0.020 bar, 0.137 bar & 0.206 bar will extend outside the PRMS boundary from north side by a distance from 5 to 175 meters downwind.
	Heat radiation / Fireball 9.5 kW/m ² 12.5 kW/m ²	N/D
Pin hole (1") gas release 8	3" outlet pipeline	
	Gas cloud UFL LFL 50 % LFL	The modeling shows that the gas cloud will be limited inside the PRMS boundary.
	Heat radiation / Jet fire 9.5 kW/m ² 12.5 kW/m ²	The modeling shows that the heat radiation value (9.5 kW/m² & 12.5 kW/m²) effects will be limited inside the PRMS boundary downwind affecting the PRMS facilities.
	Early explosion 0.020 bar 0.137 bar 0.206 bar	The modeling shows that the value of 0.020 bar will extend outside the PRMS boundary from all sides covering the office and security buildings down and crosswind (north and west sides), reaching the outside road (north side). The value of 0.137 bar and 0.206 bar will be limited inside the PRMS boundary affecting the PRMS facilities.

PETROSAFE

EGAS

Page 11 of 110

Date: Aug. 2018

Egyptian Natural Gas Holding Company "EGAS"

Event	Scenario	Effects			
	Late explosion 0.020 bar 0.137 bar 0.206 bar	N/D			
Half Rupture (4") gas relea	se 8" outlet pipeline				
• • • • • • • • • • • • • • • • • • • •	Gas cloud UFL LFL 50 % LFL	The modeling shows that the gas cloud (UFL, LFL & 50% LFL) will limited inside the PRMS boundary.			
	Heat radiation / Jet fire 9.5 kW/m ² 12.5 kW/m ²	The modeling shows that the heat radiation values of 9.5, 12.5, 25 & 37.5 kW/m² will be limited inside the PRMS boundary affecting the PRMS facilities. The values of 1.6 & 4 kW/m² will affects the security office crosswind and reaching the north corner of the admin office (1.6) upwind.			
	Early explosion 0.020 bar 0.137 bar 0.206 bar	The modeling shows that the value of 0.020 bar will extend outside the PRMS boundary from all sides covering the office and security buildings down and crosswind (north and west sides), reaching the outside road (north side). The value of 0.137 bar and 0.206 bar will be limited inside the PRMS boundary affecting the PRMS facilities.			
	Late explosion 0.020 bar 0.137 bar 0.206 bar	The modeling shows that the value of 0.020 bar will extend PRMS boundary covering the admin office inside and outside from north (13 m), east (15 m) and west (5 m) with no effects. The value of 0.137 bar and 0.206 bar will be limited inside the PRMS extend to the north side with no effects.			
Full Rupture gas release 8'	Full Rupture gas release 8" outlet pipeline				
	Gas cloud UFL LFL 50 % LFL	The modeling shows that the gas cloud effects will be limited inside the PRMS boundary.			
	Heat radiation / Jet fire 9.5 kW/m ² 12.5 kW/m ²	The modeling shows that all radiation values will extend outside the PRMS from north, east and west sides. The heat radiation values 9 & 12.5 kW/m² will cover the security office crosswind.			

Egyptian Natural Gas Holding Company "EGAS"

Page 12 of 110

Date: Aug. 2018

Event	Scenario	Effects
	Early explosion 0.020 bar 0.137 bar 0.206 bar	The value of 0.137 bar and 0.206 bar will be limited inside the PRMS boundary affecting the PRMS facilities.
	Late explosion 0.020 bar 0.137 bar 0.206 bar	The modeling shows that the value of 0.020 bar will extend outside the PRMS boundary from north, east and west sides, covering the security office crosswind (west side). The value of 0.137 bar and 0.206 bar will be extend outside the PRMS from the north side near to the fence and outside road.
	Heat radiation / Fireball 9.5 kW/m ² 12.5 kW/m ²	The modeling shows that the heat radiation values of 9.5 & 12.5 kW/m² will be limited inside the PRMS boundary.
Odorant tank 1" leak		
	Gas cloud UFL LFL 50 % LFL	The modeling shows that the vapor cloud will be limited inside the PRMS boundary. Consideration should be taken when deal with liquid, vapors and smokes according to the MSDS for the material.
	Heat radiation / Jet fire 9.5 kW/m ² 12.5 kW/m ²	The modeling shows that the heat radiation of (9.5, 12.5, 25 & 37.5 kW/m²) effects will extend outside from the north to reach about 7 meters downwind.
	Early explosion 0.020 bar 0.137 bar 0.206 bar	N/D
	Late explosion 0.020 bar 0.137 bar 0.206 bar	The modeling shows that all values will be limited inside the PRMS boundary with no direct effects on offices.

PETROSAFE

Egyptian Natural Gas Holding Company "EGAS"

Page 13 of 110 Date: Aug. 2018

Event	Scenario	Effects
Pin hole (1") gas release 6"	off-take pipeline	
	Gas cloud UFL LFL 50 % LFL Heat radiation / Jet fire 9.5 kW/m² 12.5 kW/m²	The modeling shows that the gas cloud effects will be limited inside the off-take boundary. The modeling shows that the heat radiation values of 1.6 & 4 kW/m² will be limited inside the off-take boundary. The values of 9.5, 12.5, 25 & 37.5 kW/m² not determined by the software as it is very small values.
	Early explosion 0.020 bar 0.137 bar 0.206 bar	N/D
	Late explosion 0.020 bar 0.137 bar 0.206 bar	N/D
Half Rupture (3") gas relea	se 6" off-take pipelin	e
	Gas cloud UFL LFL 50 % LFL	The modeling shows that the gas cloud effects will be limited inside the off-take boundary.
	Heat radiation / Jet fire 9.5 kW/m ² 12.5 kW/m ²	The modeling shows that the heat radiation value of 1.6 will extend outside the off-take boundary from south, east and west sides with a few meters. The modeling shows that the heat radiation value of & 4 kW/m² will be limited inside the off-take boundary. The values of 9.5, 12.5, 25 & 37.5 kW/m² not determined by the software as it is very small values.
	Early explosion 0.020 bar 0.137 bar 0.206 bar	N/D
	Late explosion 0.020 bar 0.137 bar 0.206 bar	N/D

Page 14 of 110

Date: Aug. 2018

Document Title: Quantitative Risk Assessment "QRA" Study For Atfih Pressure Reduction & Metering Station

Event	Scenario	Effects			
Full Rupture gas release 6"	Full Rupture gas release 6" off-take pipeline				
	Gas cloud UFL LFL 50 % LFL	The modeling shows that the gas cloud will be limited inside the off-take boundary downwind with some extension from east and west sides.			
	Heat radiation / Jet fire 9.5 kW/m ² 12.5 kW/m ²	The modeling shows that the heat radiation values will extend outside the off-take boundary from west side downwind with about 50 m and not reach of any of the surroundings.			
	Early explosion 0.020 bar 0.137 bar 0.206 bar	N/D			
	Late explosion 0.020 bar 0.137 bar 0.206 bar	N/D			
	Heat radiation / Fireball 9.5 kW/m ² 12.5 kW/m ²	N/D			

The previous table shows that there are some of potential hazards with heat radiation (12.5 kW/m²) resulting from jet fire and explosion overpressure waves (0.137 bar) from late explosion events.

These risks (Jet fire & Explosion overpressure waves) will affects the workers at the PRMS, and reach the public around the station (dumping area).

In addition, it is noted that there is no effects from off-take point on surrounding area.

Regarding to the risk calculations; the risk to *Workers and the Public (PRMS)* found in Acceptable Region, so there are some points need to be considered to keep the risk tolerability and this will be describe in the study recommendations.

The major hazards that extend over site boundary and/or effect on workers / public were used for Risk Calculations.

Event Tree Analysis (ETA) is an analysis technique for identifying and evaluating the sequence of events in a potential accident scenario following the occurrence of an initiating event. ETA utilizes a visual logic tree structure **PETROSAFE**

Page 15 of 110

Date: Aug. 2018

Egyptian Natural Gas Holding Company "EGAS"

Document Title: Quantitative Risk Assessment "QRA" Study For Atfih Pressure Reduction & Metering Station

known as an event tree (ET). ETA provides a Probabilistic Risk Assessment (PRA) of the risk associated with each potential outcome. ETA has been used for scenario development.

The following data and assumptions have been considered in the Event tree analysis (ETA):

- Failure frequency data (mainly E&P Forum/OGP),
- Risk reduction factors (if available),
- Ignition probabilities (both immediate and delayed),
- Vulnerability data.

Risks have been assessed for workers / public using International Risk Management Guidelines as a reference.

The resulting risks have been compared with International Risk Acceptance Criteria.

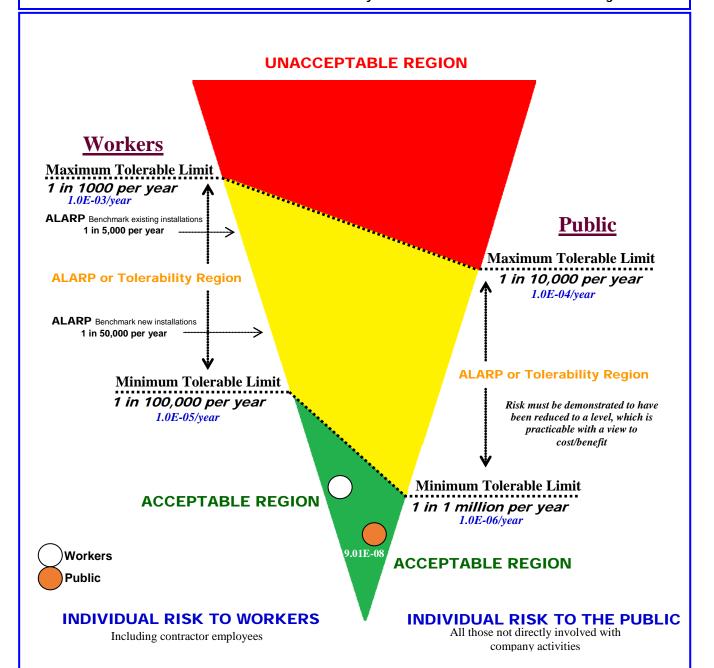
Risk evaluation for Individual Risk "IR" for the major hazards presented in the following tables:

Scenario	Event	People	Individual Risk "IR"	Acceptability Criteria
Gas Release from 8" outlet Pipeline	8" Jet Fire Indoor		1.29E-07	Acceptable $()$
TOTAL Risk for Workers		1.29E-07	Acceptable (√)	

Scenario	Event	People	Individual Risk "IR"	Acceptability Criteria
Gas release from 6" inlet pipeline	Jet Fire	Outdoor	4.52E-09	Acceptable $()$
Gas release from 8"	Jet Fire	Outdoor	4.52E-09	Acceptable $()$
outlet pipeline	Explosion	Outdoor	1.94E-09	Acceptable $()$
Odorant tank 1" leak		Outdoor	7.91E-08	Acceptable $()$
TOTAL Risk for Public (Off-Take)			9.01E-08	Acceptable (√)

The following figure show the Individual Risk "IR" as well as Societal Risk "SR" for Atfih PRMS and Off-Take point:

PETROSAFE


EGAS

Page 16 of 110

Date: Aug. 2018

Egyptian Natural Gas Holding Company "EGAS"

Document Title: Quantitative Risk Assessment "QRA" Study For Atfih Pressure Reduction & Metering Station

The level of Individual Risk to the exposed worker at Atfih PRMS, based on the risk tolerability criterion used is <u>Acceptable</u>.

The level of Individual Risk to the exposed Public at Atfih PRMS area, based on the risk tolerability criterion used is **Acceptable**.

PETROSAFE

Page 17 of 110

Date: Aug. 2018

Document Title: Quantitative Risk Assessment "QRA" Study For Atfih Pressure Reduction & Metering Station

Introduction

The Egyptian Natural Gas Holding Company "EGAS" has engaged Petroleum Safety and Environmental Services Company "PETROSAFE" to identify and evaluate hazards generated from the "New Natural Gas Pressure Reduction and Odorant Station – PRMS" at Atfih City – Giza Governorate – Egypt. The PRMS operated by Egyptian Company for Natural Gas Distribution in Cities "TownGas" in order to advice protective measures for minimizing risk up to acceptable level.

As part of this review, a QRA study conducted for the following objectives:

- Identify hazardous scenarios related to the most critical unexpected event(s).
- Determine the likelihood of the identified scenarios;
- Model the potential consequences of the identified scenarios;
- Determine the Potential risk of fatality resulting from the identified hazardous scenarios.

The proposed study should also identify existing arrangements for the prevention of major accidents and their mitigation. This would involve emergency plan and procedure for dealing with such events.

PETROSAFE selected to carry out this study, as it has the experience in conducting this type of work.

PETROSAFE is also empowered by the Egyptian General Petroleum Corporation "EGPC" to identify and evaluate factors that relate to Occupational Health & Safety and Environmental Protection.

PETROSAFE

Egyptian Natural Gas Holding Company "EGAS"

Page 18 of 110

Date: Aug. 2018

	Technical Definitions
ALARP	Stands for "As Low As Reasonably Practicable", and is a term often used in the milieu of safety-critical and safety-involved systems. The ALARP principle is that the residual risk shall be as low as reasonably practicable.
API	American Petroleum Institute.
Confinement	A qualitative or quantitative measure of the enclosure or partial enclosure areas where vapors cloud may be contained.
Congestion	A qualitative or quantitative measure of the physical layout, spacing, and obstructions within a facility that promote development of a vapor cloud explosion.
DNV PHAST	Process Hazard Analysis Software Tool "PHAST" established by Det Norske Veritas "DNV". Phast examines the progress of a potential incident from the initial release to far-field dispersion including modelling of pool spreading and evaporation, and flammable and toxic effects.
E&P Forum	Exploration and Production "E&P" Forum is the international association of oil companies and petroleum industry organizations formed in 1974. It was established to represent its members' interests at the specialized agencies of the United Nations, governmental and other international bodies concerned with regulating the exploration and production of oil and gas.
EGAS	The Egyptian Natural Gas Holding Company.
EGPC	The Egyptian General Petroleum Corporation.
EX	Explosion Proof Type Equipment.
EERA	Escape, Evacuation and Rescue Assessment.
ESD	Emergency Shut Down.
Explosion	Explosion is the delayed ignition of gas in a confined or congested area resulting in high overpressure waves. Once the explosion occurs, it creates a blast wave that has a very steep pressure rise at the wave front and a blast wind that is a

Prepared By: **PETROSAFE**

Egyptian Natural Gas Holding Company "EGAS"

Page 19 of 110

Date: Aug. 2018

	transient flow behind the blast wave. The impact of the blast wave on structure near the explosion known as blast loading. The two important aspects of the blast loading concern are the prediction of the magnitude of the blast and of the pressure loading onto the local structures. Pressure loading predication as result of a blast; resemble a pulse of trapezoidal or triangular shape. They normally have duration of between approximately 40 msec and 400 msec. The time to maximum pressure is typically 20 msec. Primary damage from an explosion may result from several events: 1. Overpressure - the pressure developed between the expanding gas and its surrounding atmosphere. 2. Pulse - the differential pressure across a plant as a pressure wave passes might cause collapse or movement, both positive and negative. 3. Missiles and Shrapnel - are whole or partial items that are thrown by the blast of expanding gases that might cause damage or event escalation. In general, these "missiles" from atmospheric vapor cloud explosions cause minor impacts to process equipment since insufficient energy is available to lift heavy objects and cause major impacts. Small projectile objects are still a hazard to personnel and may cause injuries and fatalities. Impacts from rupture incidents may produce catastrophic results.
(ETA) Event Tree Analysis	Is a forward, bottom up, logical modeling technique for both success and failure that explores responses through a single initiating event and lays a path for assessing probabilities of the outcomes and overall system analysis. This analysis technique used to analyze the effects of functioning or failed systems, given that an event has occurred.
Failure Rate	Is the frequency with which an engineered system or component fails, expressed in failures per unit of time. It is highly used in reliability engineering.
GASCO	The Egyptian Natural Gas Company.
Gas Cloud Dispersion	Gas cloud air dilution naturally reduces the concentration to below the LEL or no longer considered ignitable (typically defined as 50 % of the LEL).

PETROSAFE

Egyptian Natural Gas Holding Company "EGAS"

Page 20 of 110

Date: Aug. 2018

HSE Policy	Health, Safety and Environmental Policy.
Hazard	An inherent physical or chemical characteristic (flammability, toxicity, corrosively, stored chemical or mechanical energy) or set of conditions that has the potential for causing harm to people, property, or the environment.
(HAZOP) Hazard And Operability Study	Is a structured and systematic examination of a planned or existing process or operation in order to identify and evaluate problems that may represent risks to personnel or equipment, or prevent efficient operation. The HAZOP technique is qualitative, and aims to stimulate the imagination of participants to identify potential hazards and operability problems; structure and completeness given by using guideword prompts.
(HAZID) Hazard Identification Study	Is a tool for hazard identification, used early in a project as soon as process flow diagrams, draft heat and mass balances, and plot layouts are available. Existing site infrastructure, weather, and Geotechnical data also required, these being a source of external hazards.
(HAC) Hazardous Area Classification	When electrical equipment is used in, around, or near an atmosphere that has flammable gases or vapors, flammable liquids, combustible dusts, ignitable fibers or flying's, there is always a possibility or risk that a fire or explosion might occur. Those areas where the possibility or risk of fire or explosion might occur due to an explosive atmosphere and/or mixture is often called a hazardous (or classified) location/area.
(IR) Individual Risk	The risk to a single person inside a particular building. Maximum individual risk is the risk to the most-exposed person and assumes that the person is exposed.
Jet Fire	A jet fire is a pressurized stream of combustible gas or atomized liquid (such as a high-pressure release from a gas pipe or wellhead blowout event) that is burning. If such a release is ignited soon after it occurs, (i.e., within 2 - 3 minutes), the result is an intense jet flame. This jet fire stabilizes to a point that is close to the source of release, until the release stopped. A jet fire is usually a very localized, but very destructive to anything close to it. This is partly because as well as producing thermal radiation, the jet fire causes considerable convective heating in the region

PETROSAFE

Egyptian Natural Gas Holding Company "EGAS"

Page 21 of 110

Date: Aug. 2018

	beyond the tip of the flame. The high velocity of the escaping gas entrains air into the gas "jet" causing more efficient combustion to occur than in pool fires. Consequentially, a much higher heat transfer rate occurs to any object immersed in the flame, i.e., over 200 kW/m² (62,500 Btdsq. ft) for a jet fire than in a pool fire flame. Typically, the first 10% of a jet fire length is conservatively considered un-ignited gas, as a result of the exit velocity causing the flame to lift off the gas point of release. This effect has been measured on hydrocarbon facility flares at 20% of the jet length, but a value of 10% is used to account for the extra turbulence around the edges of a real release point as compared to the smooth gas release from a flare tip. Jet flames have a relatively cool core near the source. The greatest heat flux usually occurs at impingement distances beyond 40% of the flame length, from its source. The greatest heat flux is not necessarily on the directly impinged side.
kW/m ²	Kilowatt per square meter – unit for measuring the heat radiation (or heat flux).
LFL / LEL	Lower Flammable Limit / Lower Explosive Limit - The lowest concentration (percentage) of a gas or a vapor in air capable of producing a flash of fire in presence of an ignition source.
MSDS	Material Safety Data Sheet.
mm Hg	A millimeter of mercury is a manometeric unit of pressure, formerly defined as the extra pressure generated by a column of mercury one millimeter high.
MEL	Maximum Exposure Limit.
NFPA	National Fire Protection Association.
N	North Direction.
NE	Northern East Direction.
NW	Northern West Direction.
N/D	Not Determined.

PETROSAFE

Egyptian Natural Gas Holding Company "EGAS"

Page 22 of 110

Date: Aug. 2018

N/R	Not Reached.
OGP	Oil and Gas Producers.
ppm	Part Per Million.
PRMS	Pressure Reduction and Metering Station.
P&ID's	Piping and Instrumentation Diagrams.
PETROSAFE	Petroleum Safety and Environmental Services Company.
QRA	Quantitative Risk Assessment Study is a formal and systematic approach to estimating the likelihood and consequences of hazardous events, and expressing the results quantitatively as risk to people, the environment or your business.
Risk	Relates to the probability of exposure to a hazard, which could result in harm to personnel, the environment or public. Risk is a measure of potential for human injury or economic loss in terms of both the incident likelihood and the magnitude of the injury / loss.
Risk Assessment	The identification and analysis, either qualitative or quantitative, of the likelihood and outcome of specific events or scenarios with judgments of probability and consequences.
scm/hr	Standard Cubic Meter Per Hour.
SCBA	Self-Contained Breathing Apparatus.
SE	Southern East Direction.
SW	Southern West Direction.
TownGas	Egyptian Company for Natural Gas Distribution in Cities.
TWA	Time Weighted Averages.
UFL/UEL	Upper flammable limit, the flammability limit describing the richest flammable mixture of a combustible gas.
V	Volume.
Vapor Cloud Explosion (VCE)	An explosion in air of a flammable material cloud.

PETROSAFE

Egyptian Natural Gas Holding Company "EGAS"

Page 23 of 110

Date: Aug. 2018

Document Title: Quantitative Risk Assessment "QRA" Study For Atfih Pressure Reduction & Metering Station

Objectives

The objectives of this QRA for the unit facilities are:

- Identify hazardous scenarios related to the facilities based on historical data recorded;
- Determine the likelihood (frequencies) of the identified scenarios;
- Model the potential consequences of the identified scenarios;
- Determine the Potential risk of fatality resulting from the identified hazardous scenarios;
- Evaluate the risk against the acceptable risk level to ensure that it is within <u>As Low As Reasonably Practicable "ALARP"</u>, otherwise additional control measures and recommendations will be provided at this study to reduce the Risk, (ALARP).

PETROSAFE

EGAS
Egyptian Natural Gas Holding Company "EGAS"

Page 24 of 110

Date: Aug. 2018

Document Title: Quantitative Risk Assessment "QRA" Study For Atfih Pressure Reduction & Metering Station

Quantitative Risk Assessment Study Scope

The scope of work of this QRA study is limited to the following:

- Identification of the Most Critical Event(s) or scenarios that may lead to fatal accidents as well as to ensure that the expected risk will not exceed the Acceptable Risk Level as per national and international standards:
- To assess and quantify the risks associated with Atfih PRMS and the off-take point on the neighboring / surrounding community;
- The study determines Frequencies, Consequences (Including Associated Effect Contours) and Potential Risk of Fatality for the identified hazardous scenarios;
- Normal operation of the facilities (e.g. Construction and specific maintenance activities) are excluded from this analysis.

Prepared By: **PETROSAFE**

Page 25 of 110

Date: Aug. 2018

Document Title: Quantitative Risk Assessment "QRA" Study For Atfih Pressure Reduction & Metering Station

Quantitative Risk Assessment "QRA" Studies

Method of Assessment

1.0- General Method Used

Attention mainly focussed on those accidents where a gross failure of containment could result in the generation of a large vapour cloud of flammable or toxic material. The approach adopted has involved the following stages:

- Identification of hazardous materials,
- Establishment of maximum total inventories and location.

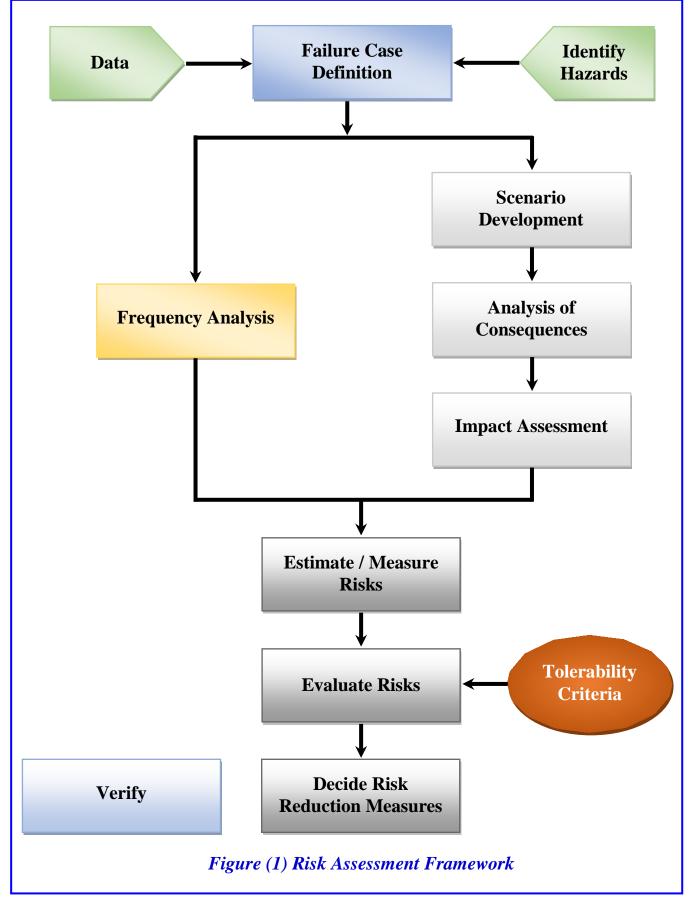
During the site visit by the study team, the overall functioning of the site discussed in some detail and the Companies asked to provide a complete list of holdings of hazardous materials. A preliminary survey notes was issued by the team, as a private communication to the company concerned, and this formed the basis for subsequent more discussion and analysis.

From the PRMS design model provided by the client, it was impractical to examine in depth all possible failure modes for all parts within the time allowed for this study. Instead, only those potential failures, which might contribute, either directly or indirectly, to off-site risks were examined.

2.0- Risk Assessment

As the PRMS designed and prepared for construction, so it was therefore necessary for the study team to identify and analyse the hazards potential from first principles the routes by which a single or multiple accident could affect the community or neighbouring.

The terms of reference required the team to investigate and determine the overall risk to health and safety both from individual installations and then foreseeable interactions.


The assessment of risk in a complex situation is difficult. No method is perfect as all have advantages and limitations.

It was agreed that the quantitative approach was the most meaningful way of comparing and evaluating different risks. The risk assessment framework shown in Figure (1) used for the study.

Page 26 of 110

Date: Aug. 2018

Egyptian Natural Gas Holding Company "EGAS"

PETROSAFE

EGAS
Egyptian Natural Gas Holding Company "EGAS"

Page 27 of 110

Date: Aug. 2018

Document Title: Quantitative Risk Assessment "QRA" Study For Atfih Pressure Reduction & Metering Station

Modeling the Consequences

Modeling of the consequences is one of the key steps in Quantitative Risk Assessment "QRA", as it provides the link between hazard identification (in this study Potential Loss of Containment Incidents) and the determination of possible impact of those incidents on People (Worker / Public), Asset and the Environment.

In this study, Natural Gas (Mainly Methane CH_4) was considered. There are several types of consequences to be considered for modelling, these include Gas Dispersion (UFL - LFL - 50 % LFL) / Heat Radiation / Explosion Overpressure modeling, also each of these scenarios described in the following table:

Table (1) Description of Modeling of the Different Scenario

Discharge Modeling	Modeling of the mass release rate and its variation overtime.
Radiation Modeling	Modeling of the Thermal radiation from fires.
Dispersion Modeling	Modeling of the Gas and two-phase releases.
Overpressure	Associated with explosions or pressure burst.

Toxic hazards are considered as result of releases / loss of containment for which discharge modeling and gas dispersion modeling are required. The hazard ranges are dependent upon the condition of the release pressure and rate of release.

There are a number of commercial software for modeling gas dispersion, fire, explosion and toxic releases. PETROSAFE select the <u>DNV PHAST Ver. 7.21</u> <u>Software package</u> in modeling scenarios.

The software developed by DNV in order to provide a standard and validated set of consequence models that can be used to predict the effects of a release of hydrocarbon or chemical liquid or vapour. (Results of the modeling presented in pages from 51 to 91)

PETROSAFE

Page 28 of 110

Date: Aug. 2018

Document Title: Quantitative Risk Assessment "QRA" Study For Atfih Pressure Reduction & Metering Station

Criterion for Risk Tolerability

The main function of this phase of the work was to assess the effectiveness of the proposed arrangement for managing risks against performance standards.

In order to do this, we need firstly to define a performance standard and secondly, to be able to analyse the effectiveness of the arrangements in a manner which permits a direct comparison with these standards.

The defining of performance standards undertakes at the following three levels:

- Policy-based
- System
- Technical

Where the present work is mainly concerned with the assessment against the standards associated with the first two levels.

The policy-based performance standard relates to this objective to provide a working environment, where the risk to the individual reduced to a level that is ALARP.

This performance standard is therefore, expressed in the form of individual risk and the arrangements for managing this risk should result in a level of 'Individual Risk', based on a proposed Tolerability Criteria, Figure (2).

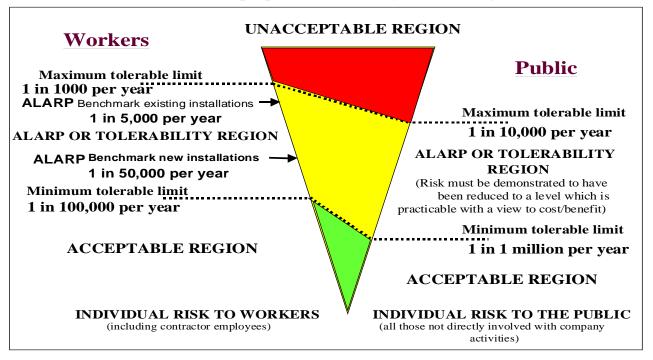


Figure (2) Criteria for Individual Risk Tolerability

Date: Aug. 2018

Egyptian Natural Gas Holding Company "EGAS"

Document Title: Quantitative Risk Assessment "QRA" Study For Atfih Pressure Reduction & Metering Station

The criterion for IR tolerability for workers and to the public outlined in Table (2) and Figure (3).

It should be noted that this criteria proposed only as a guideline. Risk assessment is no substitute to professional judgement.

Table (2) Proposed Individual Risk (IR) Criteria (per person/year)

Risk Level	Workers	Public
Intolerable	> 10 ⁻³ per person/yr.	> 10 ⁻⁴ per person/yr.
Negligible	> 10 ⁻⁵ per person/yr.	> 10 ⁻⁶ per person/yr.

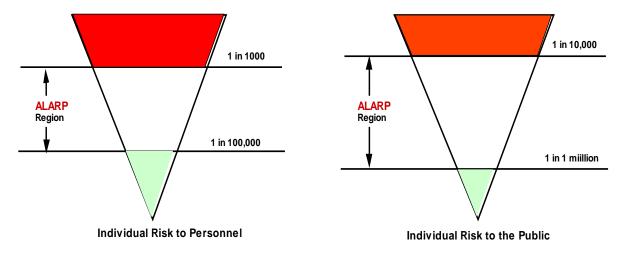


Figure (3) Proposed Individual Risk Criteria

Workers would include the Company employees and contractors. The public includes the public, visitors, and any third party who is not directly involved in the Company work activities.

On this basis, we have chosen to set our level of intolerability at Individual Risk for workers of 1 in 1,000 per year, and we define an individual risk of 1 in 100,000 per year as broadly acceptable. Consequently, our ALARP region is between 1 in 1,000 and 1 in 100,000 per person/year.

It is important to ensure that conflict between these subordinate standards and those stemming from international codes and standards are avoided and that any subordinate standards introduced are at least on a par with or augment those standards, which are associated with compliance with these international

PETROSAFE

EGAS

Page 30 of 110

Date: Aug. 2018

Egyptian Natural Gas Holding Company "EGAS"

requirements. These system level performance standards are included as part of the summaries from the QRA. These used as the basis for assessing the suitability and sufficiency of TownGas Site arrangements for both protecting personnel on site and members of public from major hazards and securing effective response in an emergency. Failure to meet acceptance criteria at this level results in the identification of remedial measures for assessment both qualitatively and quantitatively.

Document Title: Quantitative Risk Assessment "QRA" Study For Atfih Pressure Reduction & Metering Station

The analytical work use a system analysis approach and divided into a number of distinct phases:

- Data collection, including results from site-based qualitative assessments.
- Definition of arrangements.
- Qualitative evaluation of arrangements against a catalogue of fire and explosion hazards from other major accident hazards.
- Preparing of event tree analysis models.
- Consolidation of list of design events.
- Analysis of the effect of design events on fire, explosion and toxic hazard management and emergency response arrangements.
- Quantification of that impact in terms of individual risk.

The main model would base on a systems approach, and it takes the following form:

- Estimates of incremental individual risk (IIR) per person/yr.
- Is caused-consequences based.
- Uses event tree analysis to calculate the frequency of occurrence.
- Estimates incremental individual risk utilizing event tree analysis, based on modeling the emergency response arrangements from detection through to recovery to a place of safety.

PETROSAFE

Page 31 of 110

Date: Aug. 2018

Personnel Vulnerability and Structural Damage

A criterion used in the QRA study for the calculation of personnel vulnerability and structural / asset damage because of fire, explosion and toxic release shown in Table (3).

Document Title: Quantitative Risk Assessment "QRA" Study For Atfih Pressure Reduction & Metering Station

The criteria shown below provide some assumptions for the impairment effects of hydrocarbon releases on personnel and structures, which based on Health and Safety Executive: Methods of approximation and determination of human vulnerability for offshore major accident hazard assessment)

Table (3) Criteria for Personnel Vulnerability and Structural Damage

Event Type	Threshold of Fatality		Asset/Structural Damage
Jet and Diffusive Fire Impingement	6.3 kW/ m ²	(1)	- Flame impingement 10 minutes.
Impingement	12.5 kW/m ²	(2)	- 300- 500 kW/m ²
	12.6 1111/11	(2)	Structural Failure within 20 minutes.
Pool Fire Impingement	6.3 kW/ m ²	(1)	- Flame impingement 20 minutes
	12.5 kW/m ²	(2)	- 100 - 150 kW/m ²
			Structural Failure within 30 minutes.
Smoke	2.3% v/v	(3)	
	15% v/v	(4)	
Explosion Overpressure	300 mbar		100 mbar

- (1) Fatality within 1 2 minutes
- (2) Fatal < 1 minute
- (3) Above 2.3%, escape possible but difficult
- (4) No escape possible, fatal in a few seconds

The effects of exposure to fire expressed in terms of heat radiation (kW/m²) and overpressure waves shown in Tables (4), (5) and (6).

PETROSAFE

Date: Aug. 2018

Document Title: Quantitative Risk Assessment "QRA" Study For Atfih Pressure Reduction & Metering Station

Table (4) Heat Radiation Effects on Structures (World Bank)

Radiation Level kW/m²	Observed Effect
37.5	Sufficient to cause damage to process equipment.
25	Minimum energy to ignite wood at indefinitely long exposure (non-piloted).
12.5	Minimum energy required to ignite wood, melting of plastic tubing.

Table (5) Heat Radiation Effects on People

Radiation Level kW/m²	Effects on People
1.2	Equivalent to heat from sun at midday summer.
1.6	Minimum level at which pain can be sensed.
4 - 6	Pain caused in 15 - 20 seconds, Second Degree burns after 30 seconds.
12	20 % chance of fatality for 60 seconds exposure.
25	100 % chance of fatality for continuous exposure.50 % chance of fatality for 30 seconds exposure.
40	30 % chance of fatality for 15 seconds exposure.
50	100 % chance of fatality for 20 seconds exposure.

Page 33 of 110

Date: Aug. 2018

Document Title: Quantitative Risk Assessment "QRA" Study For Atfih Pressure Reduction & Metering Station

Table (6) Effects of Overpressure

Pressure		
bar	psig	Effects / Damage
0.002	0.03	Occasional breakage of glass windows.
0.006	0.1	Breakage of some small windows.
0.021	0.3	Probability of serious damage beyond this point = 0.05. 10 % glass broken.
0.027	0.4	Minor structural damage of buildings.
0.068	1.0	Partial collapse of walls and roofs, possible injuries.
0.137	2.0	Some severe injuries, death unlikely.
0.206	3.0	Steel frame buildings distorted / pulled from foundation.
0.275	4.0	Oil storage tanks ruptured.
0.344	5.0	Wooden utilities poles snapped / Fatalities.
0.41	6.0	Nearly complete destruction of building.
0.48	7.0	Loaded wagon train overturned.
0.689	10.0	Total destruction of buildings.

PETROSAFE

EGAS
Egyptian Natural Gas Holding Company "EGAS"

Page 34 of 110

Date: Aug. 2018

Document Title: Quantitative Risk Assessment "QRA" Study For Atfih Pressure Reduction & Metering Station

Quantification of the Frequency of Occurrence

The probability of a sequence of events leading to a major hazard is dependent on the probability of each event in a sequence occurring; usually these probabilities may be multiplied together to obtain the end event probability or frequency.

The technique of Quantified Risk Assessment 'QRA' requires data in the form of probability or frequency to be estimated for each input event.

Ideally, data relating to hardware failures and human error that are specific to each plant should be obtained from the company's maintenance and historical records.

Unfortunately, records available were not in the form that allows data relevant to this study to be obtained. Therefore, other sources of data were used as a basis for failure/error scenarios. The sources of information and data are shown in the References section of this report.

Identification of Scenarios Leading to Selected Failures

For each selected failure scenario, the potential contributory factors were examined, taking into account any protective features available. Typically, the factors examined included:

- Operator error
- Metallurgical fatigue or ageing of materials
- Internal or external Corrosion
- Loss of process control, e.g. pressure, temperature or flow, etc.
- Overfilling of vessels
- Introduction of impurities
- Fire and/or explosion
- Missiles
- Flooding

Account was taken at this stage of those limited releases, which, although in themselves did not constitute a significant off-site hazard could, under some circumstances, initiate a sequence leading to a larger release, as a knock-on effect.

It was noted that the proposed criterion for risk tolerability was used in Egypt by the following organizations: British Gas / British Petroleum / Shell / Total.

PETROSAFE

Page 35 of 110

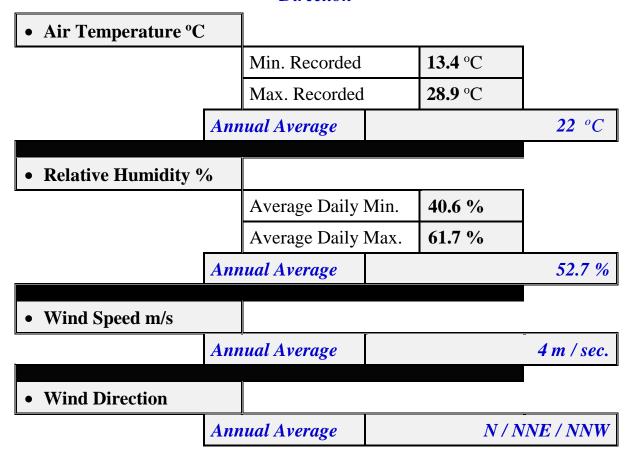
Date: Aug. 2018

Egyptian Natural Gas Holding Company "EGAS"

Document Title: Quantitative Risk Assessment "QRA" Study For Atfih Pressure Reduction & Metering Station

Relevant Weather Data for the Study

- Weather Data


The Weather Data relevant to this study consists of a list of weather conditions in the form of different combinations of wind-speed/direction, temperature, humidity and atmospheric stability. Table (7)

The weather conditions are an important input into the dispersion calculations and results for a single set of conditions could give a misleading picture of the hazard potential.

Met-oceanographic data gathered from Weather base for Giza Governorate over a period of some years.

These data included wind speed, wind direction, air temperature and humidity, as well as current speed, direction and wave height.

Table (7) Annual Average Temperature, Relative Humidity and Wind Speed / Direction

The general climatic conditions at Giza Governorate are summarized in Tables No. (8, 9 & 10) Below.

Page 36 of 110

Date: Aug. 2018

Egyptian Natural Gas Holding Company "EGAS"

Document Title: Quantitative Risk Assessment "QRA" Study For Atfih Pressure Reduction & Metering Station

Table (8) Mean of Monthly Air Temperature (°C)

Months	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Temp. (c°)	13.4	14.9	17.6	22	25.5	28.1	28.9	28.6	26.9	24	19.2	14.9

Table (9) Mean of Monthly Wind Speed (m/sec)

Months	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Wind Speed (m/sec)	3.11	3.80	4.30	3.50	4.69	4.80	4.61	4.11	4.19	4.30	3.50	3.11

Table (10) Mean of Monthly Average Relative Humidity

Months	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Relative Humidity (%)	61	55.6	51.9	43	40.6	43.7	50.6	54.9	55.2	55.7	59	61.7

Figure (4) shows the maximum temperature diagram for Giza Governorate

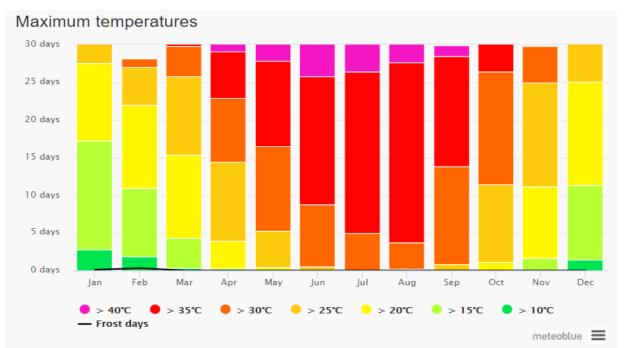


Figure (4) – Monthly Variations of the Maximum Temperature – Giza Governorate

Page 37 of 110

Date: Aug. 2018

Figures (5 & 6) show the monthly variations of the wind speed as well as wind rose for Giza Governorate respectively.



Figure (5) – Monthly Variations of the Wind Speed – Giza Governorate

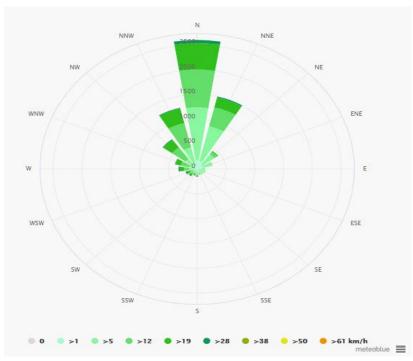


Figure (6) –Wind Rose – Giza Governorate

Page 38 of 110

Date: Aug. 2018

Egyptian Natural Gas Holding Company "EGAS"

Document Title: Quantitative Risk Assessment "QRA" Study For Atfih Pressure Reduction & Metering Station

Figure (7) shows the monthly variations of the sunny, cloudy and precipitation days for Giza Governorate.

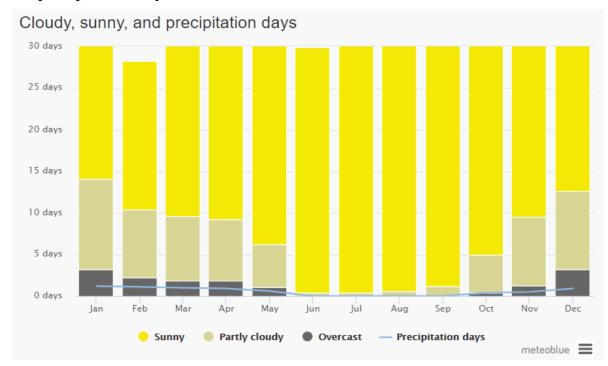


Figure (7) – Monthly Variations of the Sunny, Cloudy and Precipitation days for Giza Governorate

EGAS
Egyptian Natural Gas Holding Company "EGAS"

Page 39 of 110

Date: Aug. 2018

Document Title: Quantitative Risk Assessment "QRA" Study For Atfih Pressure Reduction & Metering Station

- Stability Categories

The two most significant variables, which would affect the dispersion calculations, are Wind-speed and atmospheric stability. The stability class is a measure of the atmospheric turbulence caused by thermal gradients. Pasqual Stability identifies six main categories, which shown in the Tables (11 & 12) and summarized in Table (13).

Table (11) Pasqual Stability Categories

Α	В	С	D	E	F
Very	Unstable	Moderately	Neutral	Moderately	Stable
Unstable		Unstable		Stable	

Neutral conditions correspond to a vertical temperature gradient of about 1°C per 100 m.

Table (12) Relationship between Wind Speed and Stability

Wind speed	So	Day-time lar Radiatio	on	Night-time Cloud Cover			
(m/s)	Strong	Medium	Slight	Thin <3/8	Medium >3/8	Overcast >4/5	
<2	A	A-B	В	-	-	D	
2-3	A-B	В	С	Е	F	D	
3-5	В	В-С	С	D	Е	D	
5-6	С	C-D	D	D	D	D	
>6	С	D	D	D	D	D	

Table (13) Sets of Weather Conditions Initially Selected for this Study

Set for Wind Speed and Stability						
Wind speed	Stability					
4 m/sec.	D					

PETROSAFE

Egyptian Natural Gas Holding Company "EGAS"

Date: Aug. 2018

Page 40 of 110

Document Title: Quantitative Risk Assessment "QRA" Study For Atfih Pressure Reduction & Metering Station

Atfih PRMS Description

Background

Atfih Pressure Reduction and Metering Station Operated by Egyptian Company for Natural Gas Distribution in Cities "TownGas". It is located about 6 km East direction from Atfih City downtown. The PRMS will provide the natural gas to Atfih area public housing.

The PRMS feeding will be from the National Gas Pipeline owned by GASCO by off-take point at a distance of about 3.6 km from the PRMS premises. The off-take point pressure will be from 45 to 70 bar, and then the pressure reduced to 4 - 7 bar at the PRMS facilities with adding odorant, and then connected to the internal distribution network to public housing at Atfih area.

PRMS Location Coordinates (TownGas Company Data)

	The I	PRMS	Off-take Point				
Point	North (N)	East (E)	North (N)	East (E)			
1	29 ° 24 ′ 49.31 ″	<i>31 ⁰ 16 ' 37.88 "</i>	29 ° 23 ' 09.15 "	31 ° 16 ′ 59.24 ″			
2	29 ° 24 ′ 50.92 ″	<i>31 ⁰ 16 ' 37.91 "</i>	29 ° 23 ' 09.94 "	31 ° 16 ′ 59.25 ″			
3	29 ° 24 ′ 50.95 ″	<i>31 ⁰ 16 ' 39.75 "</i>	29 ° 23 ' 09.95 "	31 ° 16 ′ 59.81 ″			
4	29 ° 24 ′ 49.34 ″	<i>31 ⁰ 16 ' 39.74 "</i>	29 ° 23 ' 09.15 "	<i>31 ⁰ 16 ' 59.82 "</i>			

PRMS Brief Description (TownGas Company Data)

The PRMS will be surround by 3 m height fence and mainly consist of the followings: (Ref. Figures 8, 9, 10 and 11)

- Inlet module: which contains 6" manual isolation valve.

two identical streams each contain inlet and outlet - Filter module:

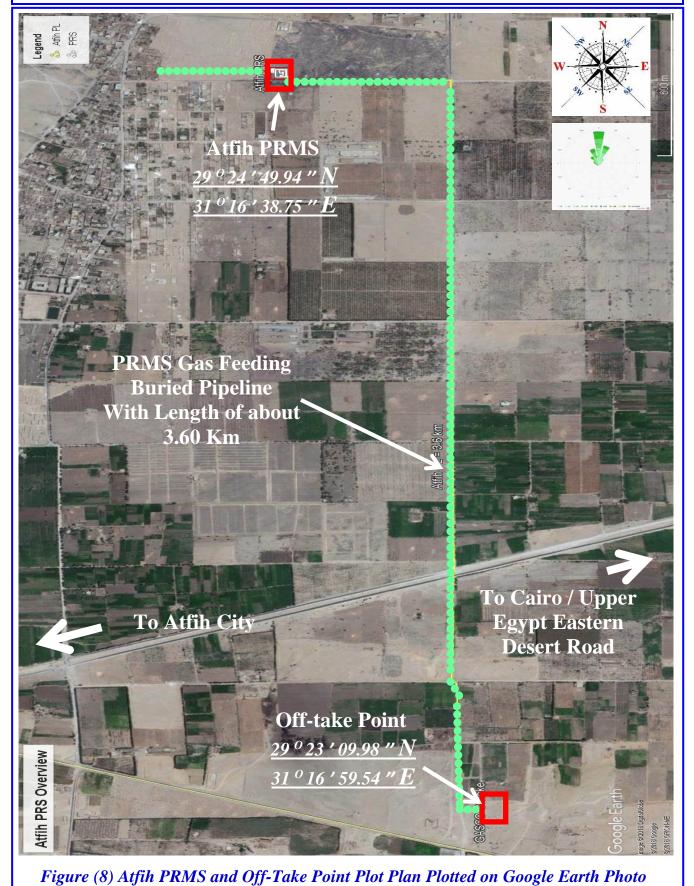
isolation valves.

- Heating system module: two identical. - Metering module: two identical.

- Regulating module: two identical regulating lines.

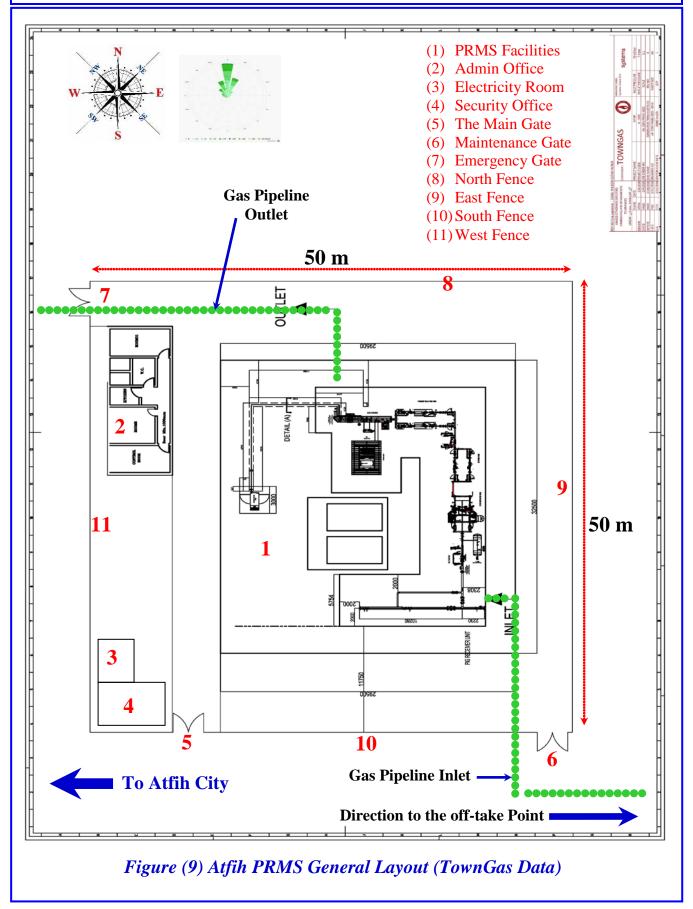
- Outlet module: it contains manual outlet isolation valve. Odorant module: 600 lit. Capacity bulk tank / 50 lit. Daily use.

- -Off-take point will be from up-ground room surrounded by 3 m height brick wall fence containing the connection pipes and isolation valves with GASCO underground pipeline 6", connected to 6" PRMS feeding pipeline.
- Security Office (one floor)
- Administration office (one floor)
- Firefighting Facilities (Fire Water Tank / Pumps / Fire water Network)


Prepared By: **PETROSAFE**

Egyptian Natural Gas Holding Company "EGAS"

Page 41 of 110


Date: Aug. 2018

Egyptian Natural Gas Holding Company "EGAS"

Page 42 of 110

Date: Aug. 2018

Page 43 of 110

Date: Aug. 2018

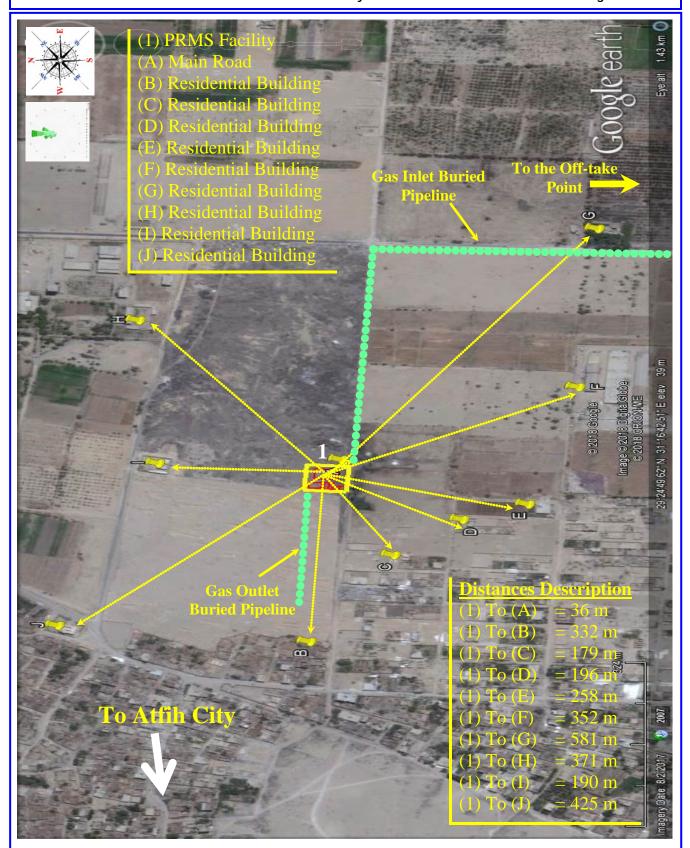


Figure (10) Atfih Pressure Reduction Station and Surroundings Plotted on Google Earth Photo

Page 44 of 110

Date: Aug. 2018

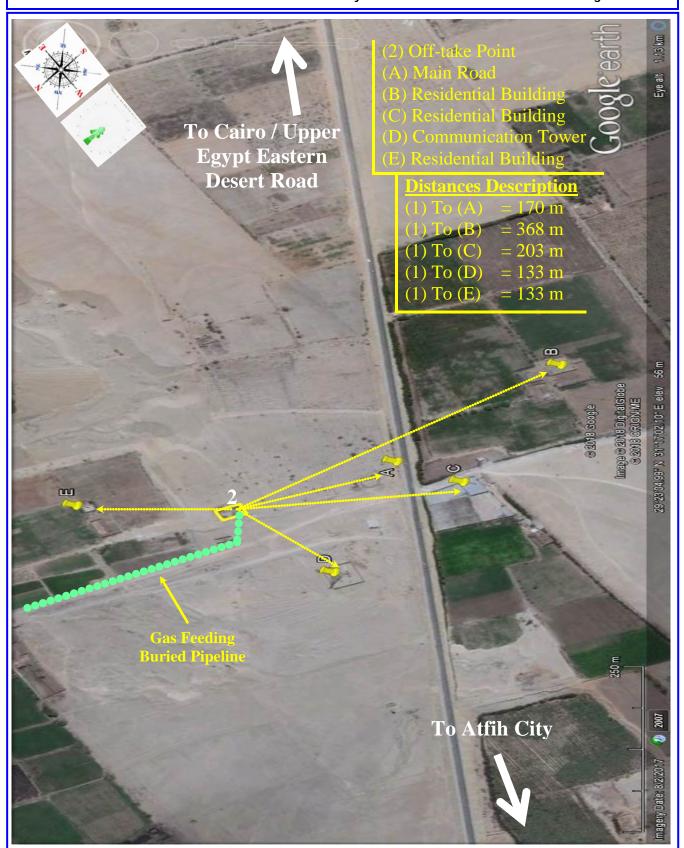


Figure (11) Atfih PRMS's Off-Take Point and Surroundings Plotted on Google Earth Photo

Page 45 of 110

Date: Aug. 2018

Egyptian Natural Gas Holding Company "EGAS"

Document Title: Quantitative Risk Assessment "QRA" Study For Atfih Pressure Reduction & Metering Station

Pressure Reduction and Metering Station (PRMS)

Consists of equipment installed for automatically reducing and regulating the pressure in the downstream pipeline or main to which it is connected. Included are piping and auxiliary devices such as valves, control instruments, control lines, the enclosure, and ventilation equipment.

PPMS required for Atfih city having an inlet pressure range (20, 70 ber g)

PRMS required for Atfih city having an inlet pressure range (20 - 70 bar g) and outlet pressure 4 - 7 bar g and maximum flow rate 10000 SCMH.

Process Condition Data (TownGas Data)

The following table no (14) describes the process conditions data for Atfih PRMS:

Table (14) Process Conditions / Gas Components & Specifications

Tuble (14) Trocess Conditions / Gus	components & Specifications
Process Conditions	
Maximum flow rate scm / hr	10000
Future flow rate scm/hr	20000
Design pressure bar g	70
Min / Max inlet pressure bar g	20 - 70
Min / Max outlet pressure bar g	4 – 7
Min / Max inlet temperature °C	15 – 25
Outlet temperature °C	Not less than 1

Gas Components	
Gas composition % Mol	
Water	0
H_2S	4 ppm
Nitrogen	0.2 - 0.83
Carbon Dioxide	0.07 - 3
Methane	77.73 - 99.82
Ethane	0.03 - 15.68
Propane	0.01 - 4.39
I-Butane	0.0 - 1.14
N-Butane	0.0 - 1.01
I-Pentane	0.0 - 0.19
N-Butane	0.0 - 0.26
C6+	0.0 - 0.25

Gas Specifications	
Specific gravity	0.5 - 0.69 (air = 1 k/m ³)

PETROSAFE

EGAS

Egyptian Natural Gas Holding Company "EGAS"

Page 46 of 110

Date: Aug. 2018

Document Title: Quantitative Risk Assessment "QRA" Study For Atfih Pressure Reduction & Metering Station

Pressure Reduction Station Mechanical Works

Constructing Pressure Reduction Stations and city gate regulators are regular construction works in addition to connections between transmission mains and distribution mains.

The PRMS comprises two types of pressures, the first is the upstream pressure, which a high pressure is ranging from 20 to 70 Bar, while the second pressure is the downstream pressure, which is a low pressure (4 - 7 bar). Inlet stage

The inlet components of the PRMS should be completely isolated from the cathodic system applied to the feeding steel pipes. This is achieved by installing isolating joint with protection.

Filtration Stage

The aim of the filtration stage is to remove dust, rust, solid contaminants and liquid traces. Two filters and two separators are installed in parallel; each filter-separator operates with the full capacity of the PRMS. Filter-separator lines are equipped with safety devices such as differential pressure gauges, relief valves, liquid indicators, etc.

Heating Stage

Because the difference between the inlet and outlet pressure is relatively high, icing normally occurs around outlet pipes. This may cause blockings and accordingly reduce or stop the gas flow. To avoid such circumstances, a heater is installed to keep the temperature of outlet pipes over 7 °C. Each PRMS is equipped with two heaters in parallel in order to allow for a standby heater in emergencies.

Reduction Stage

Each PRMS includes two reduction lines in parallel, also to allow for a standby line. The lines are equipped with safety gauges, indicators and transmitters to maintain safe operation conditions. According to the IGEM standards, the reduction unit should be installed in a well-ventilated-closed area or, alternatively, in an open protected area.

Measuring Stage

After adjusting the outlet pressure, gas flow and cumulative consumption then measured to monitor Natural Gas consumption from the PRMS and to adjust the dosing of the odorant as indicated below. Measuring devices should be sensitive to low gas flow, which normally occurs during the first stages after connecting a small portion of targeted clients.

Page 47 of 110

Date: Aug. 2018

Egyptian Natural Gas Holding Company "EGAS"

Document Title: Quantitative Risk Assessment "QRA" Study For Atfih Pressure Reduction & Metering Station

Odorizing Stage

The objective of the odorant is to enable the detection of gas leaks in residential units at low concentration, before gas concentration becomes hazardous. The normally used odorant is composed of Tert-butyl mercaptan (TBM) (80%) and Methyl-sulphide (20%). The normal dosing rate of the odorant is 12-24 mg/cm³. The system consists of stainless steel tank with a capacity of 600 liters and small vessel with capacity of 50 liters for daily use.

Outlet Stage

The outlet stage includes an outlet valve gauge, temperature indicators, pressure and temperature transmitters and non-return valves. The outlet pipes are also, like inlet pipes, isolated from the cathodic protection by an isolating joint.

Operating Philosophy and Control

Automatically reducing of pressure according to setting pressure of regulators and monitored by control room.

Shutdown and Isolation Philosophy

Pressure reduction station consist of main inlet and outlet valves to isolate PRMS in any Emergency case under specific procedure. In order to isolate PRMS in crisis and no any access available buried valves outside PRMS contours shall be used.

Fire Protection Facilities

The following table describes the firefighting facilities at the PRMS:

Firefighting Network Standalone Steel Tank a	For Occupied Offices and PRMS Facilities		
Fire Alarm Control Syst	For Occupied Offices		
	CO ₂ Type	For Electricity Type Fire	
Fire Extinguisher	Foam Type	For Fire Due to Odorant	
	Powder Type	For Any Type of Fire	

PETROSAFE

EGAS

Page 48 of 110

Date: Aug. 2018

Egyptian Natural Gas Holding Company "EGAS"

Document Title: Quantitative Risk Assessment "QRA" Study For Atfih Pressure Reduction & Metering Station

Gas Odorant Specifications

The odorant supplied with a Hazard Data Sheet and identified as Spotleak 1009. Spotleak is an aliphatic mixture in clear liquid form that is extremely flammable, with the following characteristics:

Boiling Range	60-70° C
Flash Point	-17.8° C
Freezing Point	-45.5° C
	Flash Point

- Density $(H_2O = 1)$ 0.812 @ 15.5° C

Vapor Density
 Vapor Pressure (mm Hg)
 3.0 (air = 1)
 6.6 @ 37.8° C

Health Hazards

Spotleak is not carcinogenic, but the major health hazards as a result of exposure to Spotleak include the following:

Inhalation

• Short-term exposure: Irritation and central nervous system effects

• Long-term exposure: Irritation

Skin Contact

Short-term: Irritation Long-term: Dermatitis

Eye Contact

• Short-term: Irritation and tearing

• Long-term: Irritation

Ingestion

• Short-term: nausea, vomiting, central nervous system effects

• Long-term: no effects are known

Hygiene Standards and Limits

Occupational Exposure Limit for Spotleak to all components is 45 ppm, and the long-term "MEL" should be below 12 ppm (8 hrs. "TWA").

Page 49 of 110

Date: Aug. 2018

Document Title: Quantitative Risk Assessment "QRA" Study For Atfih Pressure Reduction & Metering Station

Fire and Explosion Hazards

Spotleak is a severe fire hazard. Vapor/air mixtures are explosive. Vapor is 3 times heavier than air. Vapor may ignite at distant ignition sources and flash back.

Thermal decomposition products include oxides of sulphur and hydrogen sulphide.

Emergency Response Plan "ERP"

TownGas provide a fine prepared Emergency Response Plan "ERP" for the whole company, which include the following items:

- HSE Policy
- Objectives
- Emergency types
- Emergency levels
- Emergency calls and reporting
- Emergency communications
- Roles and responsibilities
- Power sources and control systems
- Firefighting facilities and materials
- Odorant hazards
- Emergency scenarios for PRMS's
- Emergency scenarios for distribution network
- PRMS's and regulators layout

Page 50 of 110

Date: Aug. 2018

Document Title: Quantitative Risk Assessment "QRA" Study For Atfih Pressure Reduction & Metering Station

Analytical Results of Consequence Modeling

1.0- Pressure Reduction Station Inlet Pipeline (6 inch)

1/1- Consequence Modeling for 1 inch (Pin Hole) Gas Release

The following table no. (15) Show that:

Table (15) Dispersion Modeling for Inlet - 1" / 6" Gas Release

Gas Release (Inlet / PRV "High Pressure")									
Wind Category	Flammability Limits	Height (m)	Cloud Width						
	UFL	0.88	1.00	0.28 @ 0.50 m					
4.00 D	LFL	3.13	1.00	0.32 @ 2.00 m					
	50 % LFL	5.08	0 – 1.03	1.30 @ 3.50 m					

Jet Fire									
Wind Category	Flame Length (m)	Heat Radiation (kW/m²)	Distance Downwind (m)	Distance Crosswind (m)	Lethality Level (%)				
		1.6	6.80	3.44	0				
	5.70	4	2.22	1.52	0				
4.00 D		9.5	Not Reached	Not Reached	0.72				
4.00 D		12.5	Not Reached	Not Reached	20% /60 sec.				
		25	Not Reached	Not Reached	80.34				
		37.5	Not Reached	Not Reached	98.74				

Explosion Overpressure									
Wind	Pressure Value	Over Pressure Radius (m)		Overpressure Waves					
Category	(bar)	Early	Late		Effect / Damage				
			0.021 bar	Probability of serious damage beyond this point = 0.05 - 10 % glass broken					
4.00 D	0.137	N/D	N/D	0.137 bar	Some severe injuries, death unlikely				
	0.206	N/D	N/D	0.206 bar	Steel frame buildings distorted / pulled from foundation				

Page 51 of 110

Date: Aug. 2018

Egyptian Natural Gas Holding Company "EGAS"

Document Title: Quantitative Risk Assessment "QRA" Study For Atfih Pressure Reduction & Metering Station

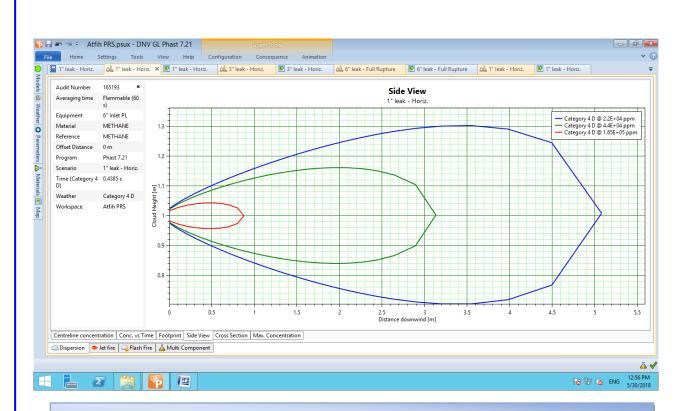


Figure (12) Gas Cloud Side View (UFL/LFL) (1" hole in 6" Inlet Pipeline)

- The previous figure shows that if there is a gas release from 1" hole size without ignition the flammable vapors will reach a distance more than 5 m downwind and from 0 1.03 m height.
- The UFL will reach a distance of about 0.88 m downwind with a height of 1 m. The cloud large width will be 0.28 m crosswind at a distance of 0.50 m from the source.
- The LFL will reach a distance of about 3.13 m downwind with a height of 1 m. The cloud large width will be 0.32 m crosswind at a distance of 2 m from the source.
- The 50 % LFL will reach a distance of about 5.08 m downwind with a height from 0 to 1.03 m. The cloud large width will be 1.30 m crosswind at a distance of 3.50 m from the source.

The modeling shows that the gas cloud effects will be limited inside the PRMS boundary.

PETROSAFE

EGAS
Gas Holding Company "EGA"

Page 52 of 110

Date: Aug. 2018

Egyptian Natural Gas Holding Company "EGAS"

Document Title: Quantitative Risk Assessment "QRA" Study For Atfih Pressure Reduction & Metering Station

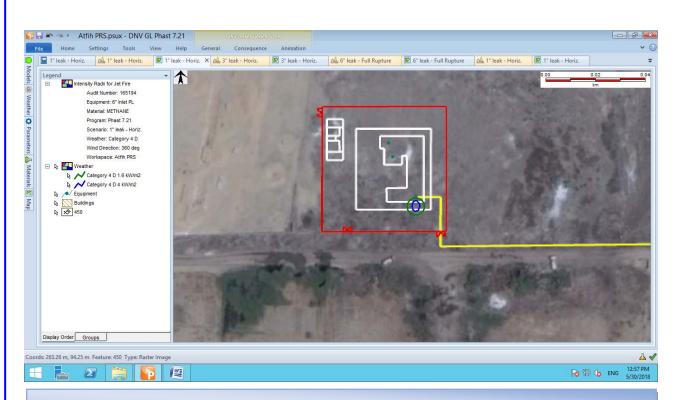


Figure (13) Heat Radiation Contours from Jet Fire (1" hole in 6" Inlet Pipeline)

- The previous figure show that if there is a gas release from 1" hole size and ignited the expected flame length is about 5.70 meters downwind.
- The 4 kW/m² heat radiation contours extend about 6.80 meters downwind and 3.44 meters crosswind.
- The 9.5 kW/m² heat radiation not reached.
- The 12.5 kW/m² heat radiation not reached.
- The 25 kW/m² heat radiation not reached.
- The 37.5 kW/m² heat radiation not reached.

The modeling shows that the heat radiation value of 4 kW/m^2 will be limited inside the PRMS boundary. The values of 9.5, 12.5, $25 \& 37.5 \text{ kW/m}^2$ not determined by the software due to small amount of the gas released.

Page 53 of 110

Date: Aug. 2018

Document Title: Quantitative Risk Assessment "QRA" Study For Atfih Pressure Reduction & Metering Station

1/2- Consequence Modeling for 3 inch (Half Rup.) Gas Release

The following table no. (16) Show that:

Table (16) Dispersion Modeling for Inlet - 3" / 6" Gas Release

Gas Release									
Wind Category Flammability Limits		Distance (m)	Height (m)	Cloud Width					
	UFL	3.00	1.00	0.44 @ 1.50 m					
4.00 D	LFL	11.00	1.55	1.10 @ 7.00 m					
	50 % LFL	19.50	0 - 3.60	2.20 @ 14.55 m					

Jet Fire									
Wind Category	Flame Length (m)	Heat Radiation (kW/m²)	Distance Downwind (m)	Distance Crosswind (m)	Lethality Level (%)				
		1.6	25.40	17.60	0				
		4	19.96	10.91	0				
4.00 D	17.39	9.5	15.80	6.13	0				
4.00 D	17.39	12.5	14.40	4.78	20% /60 sec.				
		25	11.20	1.80	80.34				
		37.5	Not Reached	Not Reached	98.74				

Explosion Overpressure									
Wind Category	Pressure Value	Over Pressure Radius (m)							Overpressure Waves
Category	(bar)	Early	Late		Effect / Damage				
4.00 D	0.020	N/D	41	0.021 bar	Probability of serious damage beyond this point = 0.05 - 10 % glass broken				
	0.137	N/D	25	0.137 bar	Some severe injuries, death unlikely				

Centreline concentration | Conc. vs Time | Footprint | Side View | Cross Section | Max. Concentration

Page 54 of 110

Date: Aug. 2018

R 12:59 PM 5/30/2018

Egyptian Natural Gas Holding Company "EGAS"

Document Title: Quantitative Risk Assessment "QRA" Study For Atfih Pressure Reduction & Metering Station

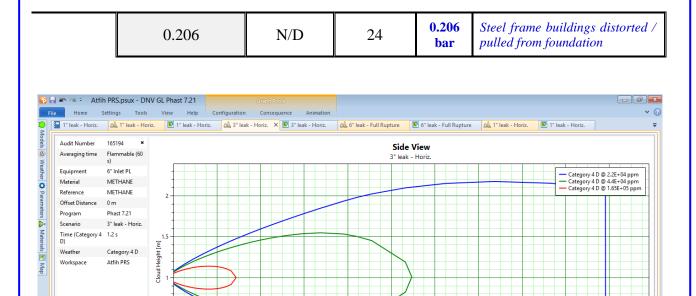


Figure (14) Gas Cloud Side View (UFL/LFL) (3" hole in 6" Inlet Pipeline)

- The previous figure shows that if there is a gas release from 3" hole size without ignition the flammable vapors will reach a distance more than 19 m downwind and from 0 to 3.60 m height.
- The UFL will reach a distance of about 3 m downwind with a height of 1 m. The cloud large width will be 0.44 m crosswind at a distance of 1.50 m from the source.
- The LFL will reach a distance of about 11 m downwind with a height of 1.55 m. The cloud large width will be 1.10 m crosswind at a distance of 7 m from the source.
- The 50 % LFL will reach a distance of about 19.50 m downwind with a height from 0 to 3.60 m. The cloud large width will be 2.20 m crosswind at a distance of 14.55 m from the source.

The modeling shows that the gas cloud (50 % LFL) will extend outside the PRMS from the north side downwind.

PETROSAFE

EGAS
Egyptian Natural Gas Holding Company "EGAS"

Page 55 of 110

Date: Aug. 2018

Document Title: Quantitative Risk Assessment "QRA" Study For Atfih Pressure Reduction & Metering Station

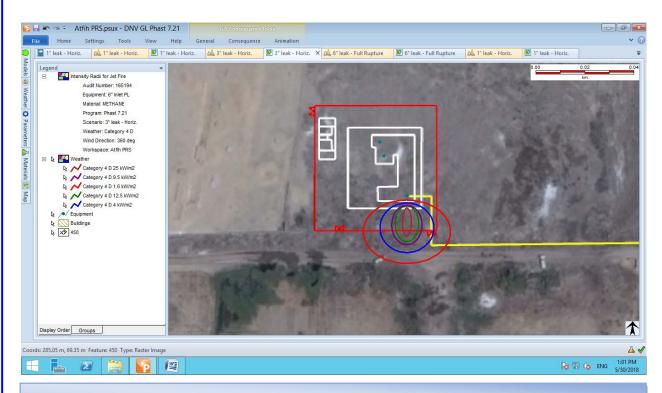


Figure (15) Heat Radiation Contours from Jet Fire (3" hole in 6" Inlet Pipeline)

- The previous figure shows that if there is a gas release from 3" hole size and ignited the expected flame length is about 17.39 meters downwind.
- The 9.5 kW/m² heat radiation contours extend about 15.80 meters downwind and 6.13 meters crosswind.
- The 12.5 kW/m² heat radiation contours extend about 14.40 meters downwind and 4.78 meters crosswind.
- The 25 kW/m² heat radiation contours extend about 11.20 meters downwind and 1.80 meters crosswind.
- The 37.5 kW/m² heat radiation not determined.

The modeling shows that all values will extend outside the N fence downwind with various distances to 25 (1.6 kW/m²).

PETROSAFE

EGAS
Egyptian Natural Gas Holding Company "EGAS"

Page 56 of 110

Date: Aug. 2018

Document Title: Quantitative Risk Assessment "QRA" Study For Atfih Pressure Reduction & Metering Station

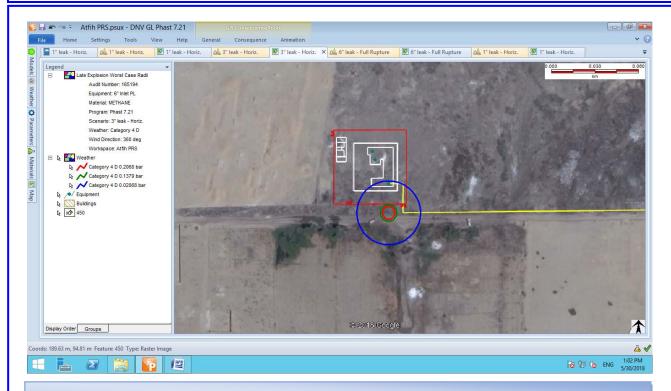


Figure (16) Late Explosion Overpressure Waves (3" hole in 6" Inlet Pipeline)

- The previous figure shows that if there is a gas release from 3" hole size and late ignited this will give an explosion with different values of overpressure waves.
- The 0.020 bar overpressure waves will extend about 41 meters downwind.
- The 0.137 bar overpressure waves will extend about 25 meters downwind.
- The 0.206 bar overpressure waves will extend about 24 meters downwind.

The modeling shows that the value of 0.020, 0.137 bar and 0.206 bar will extended outside the PRMS boundary from north and east sides reaching the outside road downwind (north side).

Page 57 of 110

Date: Aug. 2018

Egyptian Natural Gas Holding Company "EGAS"

Document Title: Quantitative Risk Assessment "QRA" Study For Atfih Pressure Reduction & Metering Station

1/3- Consequence Modeling for 6 inch (Full Rupture) Gas Release

The following table no. (17) Show that:									
Table (17) Dispersion Modeling for Inlet - 6" Gas Release									
Gas Release									
Wind Cate	egory Flammability		lity Limits	I	Distance (m)		eight (m)	(Cloud Width (m)
		Ul	FL		8.00		1.00	0	.80 @ 4.00 m
4.00 D)		FL		45.00		-1.40	-	90 @ 24.00 m
		50 %	LFL		87.00	0	-5.20	5.	40 @ 70.00 m
			J	let I	Fire				
Wind Category		Flame Length	Heat Radiation		Distan Downw		Distance Crosswin		Lethality Level
		(m)	(kW/m ²)		(m) 72.00)	(m) 47.00		(%)
			1.6		52.00		29.58		0
			9.5		40.00		17.60		0
4.00 D		39.94	12.5		36.60		14.30		20 %/60 sec.
			25		30		7.20		80.34
			37.5		22.60)	4.00		98.74
			Explosion	n O	verpress	ure			
Wind Pressure Value			Over Pres	Over Pressure Radius (m)			Overpressure Waves		
	Pres				Raulus		-		
Wind Category	Pres	sure Value (bar)			Late		Overpress Effect /		
	Pres		(0.021 bar	Effect /	Dar y of is poi	
	Pres	(bar)	Early		Late		Effect / Probability beyond this	Dar y of is poi en	serious damage int = 0.05 - 10 %
Category	Pres	(bar) 0.020	Early N/D		Late 175	bar 0.137	Probability beyond this glass broke Some sev unlikely	Dar y of is poi en vere	serious damage int = 0.05 - 10 % injuries, death ildings distorted /
Category	Pres	(bar) 0.020 0.137	N/D N/D N/D	(m)	175 119	0.137 bar 0.206	Probability beyond this glass broke Some sev unlikely Steel frame	Dar y of is poi en vere	serious damage int = 0.05 - 10 % injuries, death ildings distorted /
4.00 D Wind		(bar) 0.020 0.137 0.206 eat Radiation	N/D N/D N/D	m) Cire Dista	175 119 115 ball	0.137 bar 0.206 bar	Probability beyond this glass broke Some sev unlikely Steel frame pulled from	Dar y of is poi en vere e bui n fou	serious damage int = 0.05 - 10 % injuries, death ildings distorted / indation V/m²) Effects
4.00 D		(bar) 0.020 0.137 0.206	Early N/D N/D N/D I	Cire Dista	175 119 115 ball	0.137 bar 0.206 bar Heat	Probability beyond this glass broke Some sev unlikely Steel frame pulled from Radiation n People &	Dar y of y of s poi een vere e bui n fou (kV k St	serious damage int = 0.05 - 10 % injuries, death ildings distorted / indation V/m²) Effects ructures
4.00 D Wind		(bar) 0.020 0.137 0.206 eat Radiation (kW/m²)	Early N/D N/D N/D I Early N/D I N/D I N/D	Gire Dista (m	175 119 115 ball	0.137 bar 0.206 bar Heat 0 12.5 20 expose	Probability beyond this glass broke Some sev unlikely Steel frame pulled from Radiation n People &	Dar y of y of s poi een vere e bui n fou (kV k St	serious damage int = 0.05 - 10 % injuries, death ildings distorted / indation V/m²) Effects
4.00 D Wind Category		(bar) 0.020 0.137 0.206 eat Radiation (kW/m²) 1.6	N/D N/D N/D N/D N/D N/D N/D N/D Not I	om) ire ire ista (m) Dete	Late 175 119 115 ball ince	0.137 bar 0.206 bar Heat 0 12.5 20 expo	Probability beyond this glass broke Some sev unlikely Steel frame pulled from Radiation n People &	Dar y of is point in the point in four in four in four in for in four in formal in the point in four	serious damage int = 0.05 - 10 % injuries, death ildings distorted / indation V/m²) Effects ructures
4.00 D Wind		(bar) 0.020 0.137 0.206 eat Radiation (kW/m²) 1.6 4	N/D N/D N/D N/D N/D N/D Not l	Dete	Late 175 119 115 ball ince crmined	0.137 bar 0.206 bar Heat 0 12.5 20 expo 25 100 cont	Probability beyond this glass broke Some sev unlikely Steel frame pulled from Radiation n People & % Chance of soure % Chance of	Dar y of is point of its point	serious damage int = 0.05 - 10 % injuries, death ildings distorted / indation V/m²) Effects ructures tality for 60 sec
4.00 D Wind Category		(bar) 0.020 0.137 0.206 eat Radiation (kW/m²) 1.6 4 9.5	N/D N/D N/D N/D N/D N/D Not 1 Not 1 Not 1	Dete	Late 175 119 115 ball ince i) ermined ermined	0.137 bar 0.206 bar Heat 0 12.5 20 expo 25 100 contr 50 expo	Probability beyond this glass broke Some sev unlikely Steel frame pulled from Radiation n People & % Chance of soure % Chance of	Dar y of is point of its point	serious damage int = 0.05 - 10 % injuries, death ildings distorted / indation V/m²) Effects ructures tality for 60 sec of fatality for
4.00 D Wind Category		(bar) 0.020 0.137 0.206 eat Radiation (kW/m²) 1.6 4 9.5 12.5	Carly N/D N/	Deter	Late 175 119 115 ball ince irmined irmined irmined	0.137 bar 0.206 bar Heat 0 12.5 20 expo 25 1000 conn 50 expo 37.5	Probability beyond this glass broke Some sev unlikely Steel frame pulled from Radiation n People & Chance of Soure "Chance of Soure "Chance of Soure "Chance of Soure "Chance of Soure "Chance of Soure "Chance of Soure "Chance of Soure "Chance of Soure "Chance of Soure	Dar y of is pointed to be the point of the pointed to be the point	serious damage int = 0.05 - 10 % injuries, death ildings distorted / indation V/m²) Effects ructures tality for 60 sec of fatality for

PETROSAFE

EGAS

Page 58 of 110

Date: Aug. 2018

Egyptian Natural Gas Holding Company "EGAS"

Document Title: Quantitative Risk Assessment "QRA" Study For Atfih Pressure Reduction & Metering Station

Figure (17) Gas Cloud Side View (UFL/LFL) (6" Inlet Pipeline Full Rupture)

- The previous figure shows that if there is a gas release from 6" pipeline full rupture without ignition, the flammable vapors will reach a distance more than 87 m downwind and over 5 m height.
- The UFL will reach a distance of about 8 downwind with a height of 1 m. The cloud large width will be 0.80 m crosswind at a distance of 4 m from the source.
- The LFL will reach a distance of about 45 m downwind with a height from 0 to 1.40 m. The cloud large width will be 2.90 m crosswind at a distance of 24 m from the source.
- The 50 % LFL will reach a distance of about 87 m downwind with a height from 0 to 5.20 m. The large width will be 5.40 m crosswind at a distance of 70 m from the source.

The modeling shows that the gas cloud effects (LFL & 50 % LFL) will extend outside the N fence reaching a distance of about 74 m from the north fence downwind.

PETROSAFE

EGAS
Cas Holding Company

Page 59 of 110

Date: Aug. 2018

Egyptian Natural Gas Holding Company "EGAS"

Document Title: Quantitative Risk Assessment "QRA" Study For Atfih Pressure Reduction & Metering Station

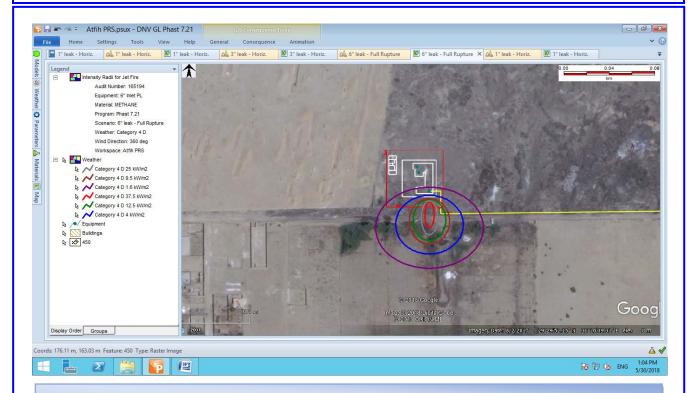


Figure (18) Heat Radiation Contours from Jet Fire (6" Inlet Pipeline Full Rupture)

- The previous figure show that if there is a gas release from 6" pipeline full rupture and ignited the expected flame length is about 40 meters downwind.
- The 9.5 kW/m² heat radiation contours extend about 40 meters downwind and 17.60 meters crosswind.
- The 12.5 kW/m² heat radiation contours extend about 36.60 meters downwind and 14.30 meters crosswind.
- The 25 kW/m² heat radiation contours extend about 30 meters downwind and 7.20 meters crosswind.
- The 37.5 kW/m² heat radiation contours extend about 22.60 meters downwind and 4 meters.

The modeling shows that the heat radiation values will extend outside the PRMS north fence reaching a distance from 5 to 45 meters downwind. The security office will be effected from 1.6 and 4 kW/m² crosswind.

PETROSAFE

EGAS
Egyptian Natural Gas Holding Company "EGAS"

Page 60 of 110

Date: Aug. 2018

Document Title: Quantitative Risk Assessment "QRA" Study For Atfih Pressure Reduction & Metering Station

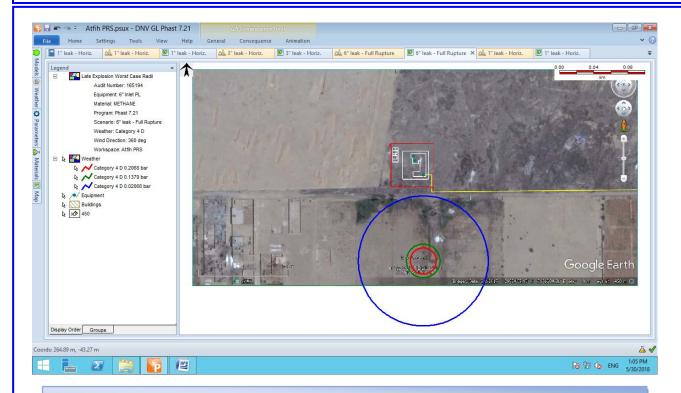


Figure (19) Late Explosion Overpressure Waves (6" Inlet Pipeline Full Rupture)

- The previous figure shows that if there is gas release from 6" pipeline full rupture and late ignited this will give an explosion with different values of overpressure waves.
- The 0.020 bar overpressure waves will extend about 175 meters downwind.
- The 0.137 bar overpressure waves will extend about 119 meters downwind.
- The 0.206 bar overpressure waves will extend about 115 meters downwind.

The modeling shows that the value of 0.020 bar, 0.137 bar & 0.206 bar will extend outside the PRMS boundary from north side with a distance from 5 to 175 meters downwind with no effects on surrounding.

Date: Aug. 2018

Egyptian Natural Gas Holding Company "EGAS"

Document Title: Quantitative Risk Assessment "QRA" Study For Atfih Pressure Reduction & Metering Station

2.0- Pressure Reduction Station Outlet Pipeline (8 inch)

2/1- Consequence Modeling for 1 inch (Pin Hole) Gas Release

The following table no. (18) Show that:

Table (18) Dispersion Modeling for Outlet - 1" / 8" Gas Release

Gas Release (Outlet / PRV "Low Pressure")									
Wind Category	Flammability Limits	Cloud Width							
	UFL	1.10	1.00	0.10 @ 0.50 m					
4.00 D	LFL	4.10	1.03	0.40 @ 2.50 m					
	50 % LFL	6.85	0 – 1.40	1.40 @ 4.50 m					

Jet Fire									
Wind Category	Flame Length (m)	Heat Radiation (kW/m²)	Distance Downwind (m)	Distance Crosswind (m)	Lethality Level (%)				
"		1.6	9.40	5.60	0				
		4	7.00	3.10	0				
4.00 D	7.18	9.5	4.00	1.10	0				
4.00 D	7.10	12.5	1.20	0.30	20% /60 sec.				
		25	Not Reached	Not Reached	80.34				
		37.5	Not Reached	Not Reached	98.74				

Explosion Overpressure									
Wind Category	Pressure Value	(m) -		n) Overpressure Waves					
Category	(bar)	Early	Late	- Effect / Damage					
	0.020	47	N/D	0.021 bar	Probability of serious damage beyond this point = 0.05 - 10 % glass broken				
4.00 D	0.137	12	N/D	0.137 bar	Some severe injuries, death unlikely				
	0.206	9	N/D	0.206 bar	Steel frame buildings distorted / pulled from foundation				

Page 62 of 110

Date: Aug. 2018

Egyptian Natural Gas Holding Company "EGAS"

Document Title: Quantitative Risk Assessment "QRA" Study For Atfih Pressure Reduction & Metering Station

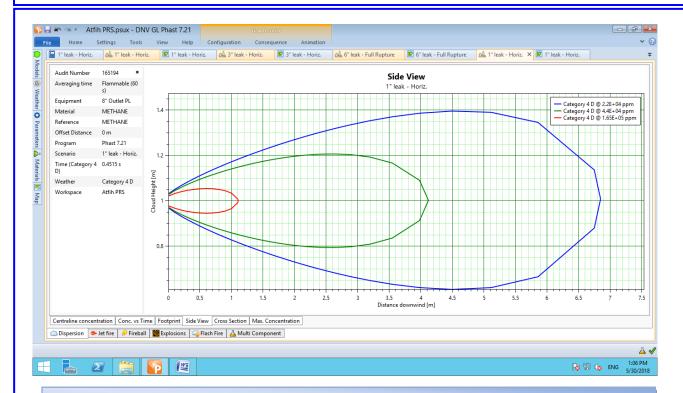


Figure (20) Gas Cloud Side View (UFL/LFL) (1" hole in 8" Outlet Pipeline)

- The previous figure show that if there is a gas release from 1" hole size without ignition the flammable vapors will reach a distance more than 6 m downwind and over 1.40 m height.
- The UFL will reach a distance of about 1.10 m downwind with a height of 1 m. The cloud large width will be 0.10 m crosswind at a distance of 0.50 m from the source.
- The LFL will reach a distance of about 4.10 m downwind with a height of 1.03 m. The cloud large width will be 0.40 m crosswind at a distance of 2.50 m from the source.
- The 50 % LFL will reach a distance of about 6.85 m downwind with a height of from 0 to 1.40 m. The cloud large width will be 1.40 m crosswind at a distance of 4.50 m from the source.

The modeling shows that the gas cloud will be limited inside the PRMS boundary.

PETROSAFE

EGAS
Egyptian Natural Gas Holding Company "EGAS"

Page 63 of 110

Date: Aug. 2018

Document Title: Quantitative Risk Assessment "QRA" Study For Atfih Pressure Reduction & Metering Station

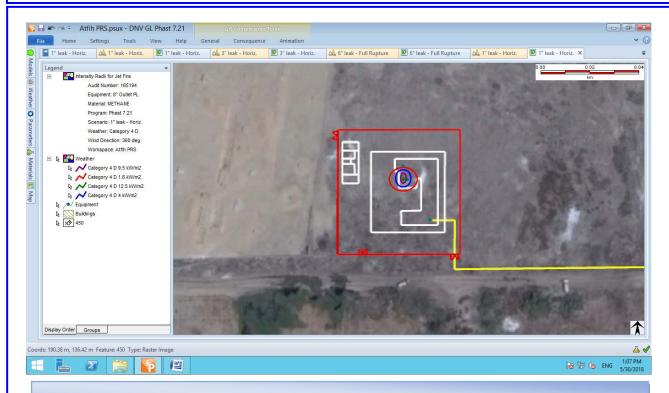


Figure (21) Heat Radiation Contours from Jet Fire (1" hole in 8" Outlet Pipeline)

- The previous figure shows that if there is a gas release from 1" hole size and ignited the expected flame length is about 7.18 meters downwind.
- The 9.5 kW/m² heat radiation contours extend about 4 meters downwind and 1.10 meters crosswind.
- The 12.5 kW/m² heat radiation contours extend about 1.20 meters downwind and 0.30 meters crosswind.
- The 25 kW/m² heat radiation not reached.
- The 37.5 kW/m² heat radiation not reached.

The modeling shows that the heat radiation value $(9.5 \text{ kW/m}^2 \text{ \& } 12.5 \text{ kW/m}^2)$ effects will be limited inside the PRMS boundary downwind affecting the PRMS facilities.

PETROSAFE

EGAS
Egyptian Natural Gas Holding Company "EGAS"

Page 64 of 110

Date: Aug. 2018

Document Title: Quantitative Risk Assessment "QRA" Study For Atfih Pressure Reduction & Metering Station

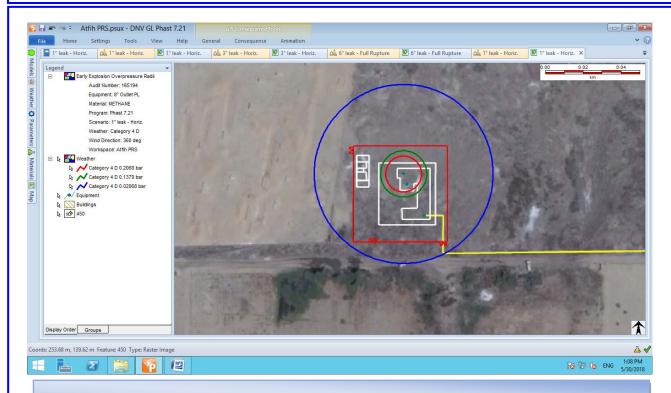


Figure (22) Early Explosion Overpressure Waves (1" hole in 8" Outlet Pipeline)

- The previous figure show that if there is a gas release from 1" hole size and early ignited this will give an explosion with different values of overpressure waves.
- The 0.020 bar overpressure waves will extend about 47 meters radius.
- The 0.137 bar overpressure waves will extend about 12 meters radius.
- The 0.206 bar overpressure waves will extend about 9 meters radius.

The modeling shows that the value of 0.020 bar will extend outside the PRMS boundary from all sides covering the office and security buildings down and crosswind (north and west sides), reaching the outside road (north side).

The value of 0.137 bar and 0.206 bar will be limited inside the PRMS boundary affecting the PRMS facilities.

Page 65 of 110

Date: Aug. 2018

Document Title: Quantitative Risk Assessment "QRA" Study For Atfih Pressure Reduction & Metering Station

2/2- Consequence Modeling for 4 inch (Half Rup.) Gas Release

The following table no. (19) Show that:

Table (19) Dispersion Modeling for Outlet - 4" / 8" Gas Release

Gas Release									
Wind Category	Flammability Limits	Distance (m)	Height (m)	Cloud Width					
	UFL	7.38	1.00	0.50 @ 3.00 m					
4.00 D	LFL	14.18	0 - 2.40	2.30 @ 14.18 m					
	50 % LFL	14.20	0 - 3.00	3.00 @ 14.20 m					

Jet Fire									
Wind Category	Flame Length (m)	Heat Radiation (kW/m²)	Distance Downwind (m)	Distance Crosswind (m)	Lethality Level (%)				
	32.10	1.6	53.00	36.30	0				
		4	40.50	22.80	0				
4.00 D		9.5	31.00	13.80	0				
4.00 D		12.5	29.20	10.80	20% /60 sec.				
		25	24.00	5.22	80.34				
		37.5	17.60	2.70	98.74				

Explosion Overpressure					
Wind Category	Pressure Value (bar)	Over Pressure Radius (m)		Overpressure Waves	
		Early	Late	Effect / Damage	
4.00 D	0.020	47	55	0.021 bar	Probability of serious damage beyond this point = 0.05 - 10 % glass broken
	0.137	12	32	0.137 bar	Some severe injuries, death unlikely
	0.206	9	31	0.206 bar	Steel frame buildings distorted / pulled from foundation

Page 66 of 110

Date: Aug. 2018

Egyptian Natural Gas Holding Company "EGAS"

Document Title: Quantitative Risk Assessment "QRA" Study For Atfih Pressure Reduction & Metering Station

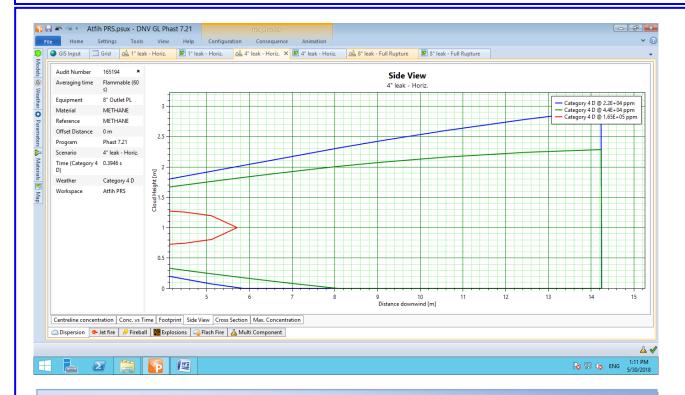


Figure (23) Gas Cloud Side View (UFL/LFL) (4" hole in 8" Outlet Pipeline)

- The previous figure shows that if there is a gas release from 4" hole size without ignition the flammable vapors will reach a distance more than 14 m downwind and 3 m height.
- The UFL will reach a distance of about 7.38 m downwind with a height of 1 m. The cloud large width will be 0.50 m crosswind at a distance of 3 m from the source.
- The LFL will reach a distance of about 14.18 m downwind with a height from 0 to 2.40 m. The cloud large width will be 2.30 m crosswind at a distance of 14.18 m from the source.
- The 50 % LFL will reach a distance of about 14.20 m downwind with a height from 0 to 3 m. The cloud large width will be 3 m crosswind at a distance of 14.20 m from the source.

The modeling shows that the gas cloud (UFL, LFL & 50% LFL) will limited inside the PRMS boundary.

PETROSAFE

EGAS
Gas Holding Company "EGA

Page 67 of 110

Date: Aug. 2018

Egyptian Natural Gas Holding Company "EGAS"

Document Title: Quantitative Risk Assessment "QRA" Study For Atfih Pressure Reduction & Metering Station

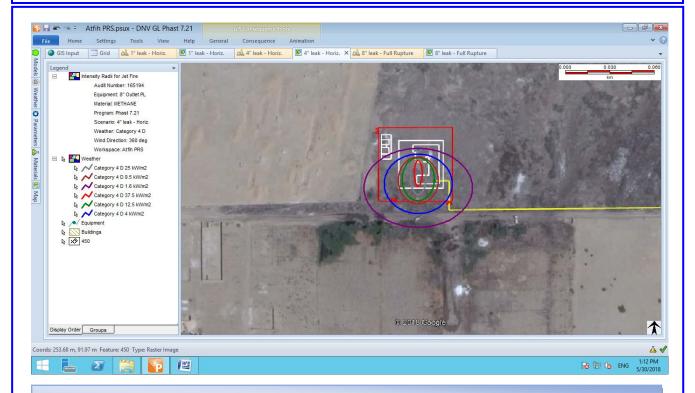


Figure (24) Heat Radiation Contours from Jet Fire (4" hole in 8" Outlet Pipeline)

- The previous figure shows that if there is a gas release from 4" hole size and ignited the expected flame length is about 32 meters downwind.
- The 9.5 kW/m² heat radiation contours extend about 31 meters downwind and 13.80 meters crosswind.
- The 12.5 kW/m² heat radiation contours extend about 29.20 meters downwind and 10.80 meters crosswind.
- The 25 kW/m² heat radiation contours extend about 24 meters downwind and 5.22 meters crosswind.
- The 37.5 kW/m² heat radiation contours extend about 17.60 meters downwind and 2.70 meters crosswind.

The modeling shows that the heat radiation values of 9.5, 12.5, 25 & 37.5 kW/m^2 will be limited inside the PRMS boundary affecting the PRMS facilities.

The values of 1.6 & 4 kW/m^2 will affects the security office crosswind and reaching the north corner of the admin office (1.6) upwind.

PETROSAFE

EGAS

Page 68 of 110

Date: Aug. 2018

Egyptian Natural Gas Holding Company "EGAS"

Document Title: Quantitative Risk Assessment "QRA" Study For Atfih Pressure Reduction & Metering Station

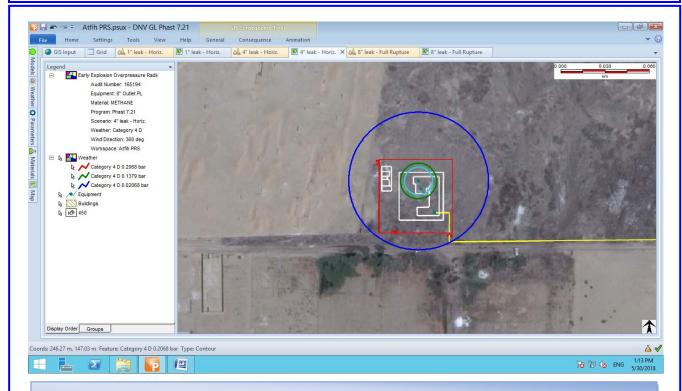


Figure (25) Early Explosion Overpressure Waves (4" hole in 8" Outlet Pipeline)

- The previous figure show that if there is a gas release from 4" hole size and early ignited this will give an explosion with different values of overpressure waves.
- The 0.020 bar overpressure waves will extend about 47 meters radius.
- The 0.137 bar overpressure waves will extend about 12 meters radius.
- The 0.206 bar overpressure waves will extend about 9 meters radius.

The modeling shows that the value of 0.020 bar will extend outside the PRMS boundary from all sides covering the office and security buildings down and crosswind (north and west sides), reaching the outside road (north side).

The value of 0.137 bar and 0.206 bar will be limited inside the PRMS boundary affecting the PRMS facilities.

PETROSAFE

EGAS

Page 69 of 110

Date: Aug. 2018

Egyptian Natural Gas Holding Company "EGAS"

Document Title: Quantitative Risk Assessment "QRA" Study For Atfih Pressure Reduction & Metering Station

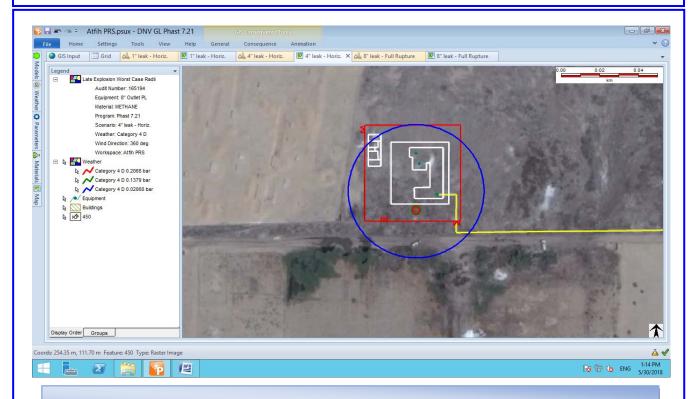


Figure (26) Late Explosion Overpressure Waves (4" hole in 8" Inlet Pipeline)

- The previous figure shows that if there is a gas release from 4" hole size and late ignited this will give an explosion with different values of overpressure waves.
- The 0.020 bar overpressure waves will extend about 55 meters downwind.
- The 0.137 bar overpressure waves will extend about 32 meters downwind.
- The 0.206 bar overpressure waves will extend about 31 meters downwind.

The modeling shows that the value of 0.020 bar will extend PRMS boundary covering the admin office inside and outside from north (13 m), east (15 m) and west (5 m) with no effects.

The value of 0.137 bar and 0.206 bar will be limited inside the PRMS extend to the north side with no effects.

Date: Aug. 2018

Egyptian Natural Gas Holding Company "EGAS"

Document Title: Quantitative Risk Assessment "QRA" Study For Atfih Pressure Reduction & Metering Station

2/3- Consequence Modeling for 8 inch (Full Rup.) Gas Release

The following table no. (20) Show that:

Table (20) Dispersion Modeling for Outlet - 8" Gas Release

Gas Release						
Wind Category	Flammability Limits	Distance (m)	Height (m)	Cloud Width		
	UFL	11.70	1.50	1.20		
4.00 D	LFL	11.80	0 - 2.60	2.60		
	50 % LFL	11.85	0 - 3.60	3.60		

Jet Fire					
Wind Category	Flame Length (m)	Heat Radiation (kW/m²)	Distance Downwind (m)	Distance Crosswind (m)	Lethality Level (%)
4.00 D	58.27	1.6	114.00	71.30	0
		4	79.00	44.80	0
		9.5	58.00	27.00	0
		12.5	51.00	22.20	20% /60 sec.
		25	41.00	24.00	80.34
		37.5	32.00	7.40	98.74

Explosion Overpressure					
Wind	Pressure Value	Over Pressure Radius (m)		Overpressure Waves	
Category	(bar)	Early	Late	Effect / Damage	
4.00 D	0.020	47	61	0.021 bar	Probability of serious damage beyond this point = 0.05 - 10 % glass broken
	0.137	12	45	0.137 bar	Some severe injuries, death unlikely
	0.206	9	44	0.206 bar	Steel frame buildings distorted / pulled from foundation

		Fireball			
Wind Category	Heat Radiation (kW/m²)	Distance (m)	Heat Radiation (kW/m²) Effects on People & Structures		
4.00 D	1.6	30	12.5 20 % Chance of fatality for 60 sec exposure 25		
	4	18			
	9.5	10	100 % Chance of fatality for continuous exposure		
	12.5	7.60	50 % Chance of fatality for 30 sec exposure 37.5		
	25	Not Reached			
	37.5	Not Reached	Sufficient of cause process equipment damage		

PETROSAFE

EGAS

Page 71 of 110

Date: Aug. 2018

Egyptian Natural Gas Holding Company "EGAS"

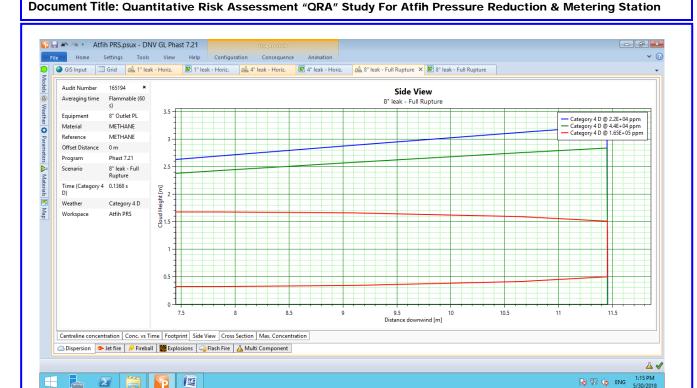


Figure (27) Gas Cloud Side View (UFL/LFL) (8" Outlet Pipeline Full Rupture)

- The previous figure shows that if there is a gas release from 8" pipeline full rupture without ignition the flammable vapors will reach a distance more than 11 m downwind and over 3.60 m height.
- The UFL will reach a distance of about 11.70 m downwind with a height of 1.50 m. The cloud large width will be 1.20 m crosswind.
- The LFL will reach a distance of about 11.80 m downwind with a height from 0 to 2.60 m. The cloud large width will be 2.60 m crosswind.
- The 50 % LFL will reach a distance of about 11.85 m downwind with a height from 0 to 3.60 m. The cloud large width will be 3.60 m crosswind.

The modeling shows that the gas cloud effects will be limited inside the PRMS boundary.

PETROSAFE

EGAS

Egyptian Natural Gas Holding Company "EGAS"

Page 72 of 110

Date: Aug. 2018

Document Title: Quantitative Risk Assessment "QRA" Study For Atfih Pressure Reduction & Metering Station

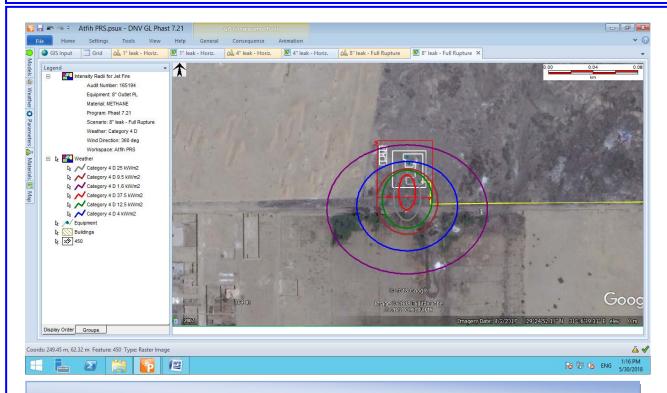


Figure (28) Heat Radiation Contours from Jet Fire (8" Outlet Pipeline Full Rupture)

- The previous figure show that if there is a gas release from 8" pipeline full rupture and ignited the expected flame length is about 58 meters downwind.
- The 9.5 kW/m² heat radiation contours extend about 58 meters downwind and 27 meters crosswind.
- The 12.5 kW/m² heat radiation contours extend about 51 meters downwind and 22.20 meters crosswind.
- The 25 kW/m² heat radiation contours extend about 41 meters downwind and 24 meters crosswind.
- The 37.5 kW/m² heat radiation contours extend about 32 meters downwind and 7.40 meters crosswind.

The modeling shows that all radiation values will extend outside the PRMS from north, east and west sides.

The heat radiation values 9 & 12.5 kW/m^2 will cover the security office crosswind.

PETROSAFE

EGAS

Page 73 of 110

Date: Aug. 2018

Egyptian Natural Gas Holding Company "EGAS"

Document Title: Quantitative Risk Assessment "QRA" Study For Atfih Pressure Reduction & Metering Station

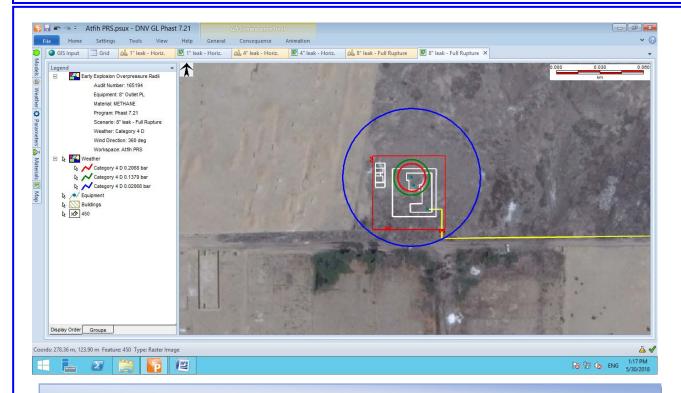


Figure (29) Early Explosion Overpressure Waves (8" Outlet Pipeline Full Rupture)

- The previous figure show that if there is a gas release from 8" pipeline full rupture and early ignited this will give an explosion with different values of overpressure waves.
- The 0.020 bar overpressure waves will extend about 47 meters radius.
- The 0.137 bar overpressure waves will extend about 12 meters radius.
- The 0.206 bar overpressure waves will extend about 9 meters radius.

The modeling shows that the value of 0.020 bar will extend outside the PRMS boundary from all sides covering the office and security buildings down and crosswind (north and west sides), reaching the outside road (north side).

The value of 0.137 bar and 0.206 bar will be limited inside the PRMS boundary affecting the PRMS facilities.

PETROSAFE

EGAS

Page 74 of 110

Date: Aug. 2018

Egyptian Natural Gas Holding Company "EGAS"

Document Title: Quantitative Risk Assessment "QRA" Study For Atfih Pressure Reduction & Metering Station

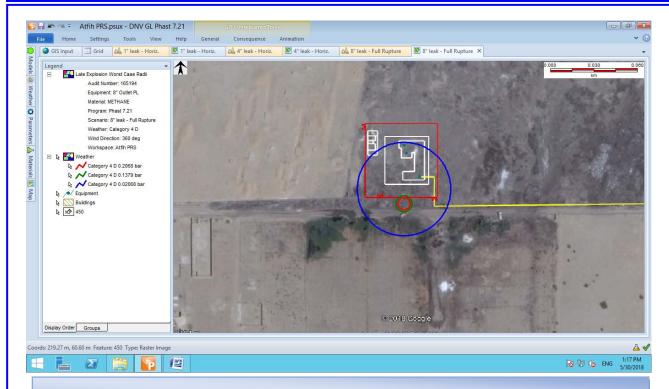


Figure (30) Late Explosion Overpressure Waves (8" Outlet Pipeline Full Rupture)

- The previous figure show that if there is a gas release from 8" pipeline full rupture and late ignited this will give an explosion with different values of overpressure waves.
- The 0.020 bar overpressure waves will extend about 61 meters downwind.
- The 0.137 bar overpressure waves will extend about 45 meters downwind.
- The 0.206 bar overpressure waves will extend about 44 meters downwind.

The modeling shows that the value of 0.020 bar will extend outside the PRMS boundary from north, east and west sides, covering the security office crosswind (west side).

The value of 0.137 bar and 0.206 bar will be extend outside the PRMS from the north side near to the fence and outside road.

PETROSAFE

EGAS

Page 75 of 110

Date: Aug. 2018

Egyptian Natural Gas Holding Company "EGAS"

Document Title: Quantitative Risk Assessment "QRA" Study For Atfih Pressure Reduction & Metering Station

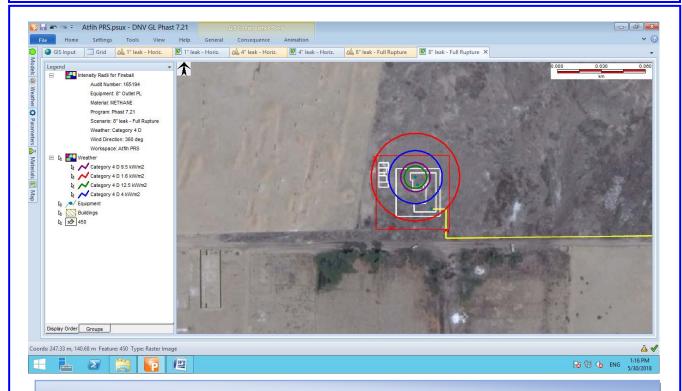


Figure (31) Heat Radiation Contours from Fireball (8" Outlet Pipeline Full Rupture)

- The previous figure show that if there is a gas release from 8" pipeline full rupture and ignited forming fireball this will gives a heat radiation with different values and contours and will extend in four dimensions.
- The 9.5 kW/m² heat radiation contours extend about 10 meters radius.
- The 12.5 kW/m² heat radiation contours extend about 7.60 meters radius.
- The 25 kW/m² heat radiation not reached.
- The 37.5 kW/m² heat radiation not reached.

The modeling shows that the heat radiation values of 9.5 & 12.5 kW/m² will be limited inside the PRMS boundary.

Page 76 of 110

Date: Aug. 2018

Egyptian Natural Gas Holding Company "EGAS"

Document Title: Quantitative Risk Assessment "QRA" Study For Atfih Pressure Reduction & Metering Station

3.0- Pressure Reduction Station Odorant Tank (Spotleak)

The following table no. (21) Show 1" hole leak form odorant Modeling:

Table (21) Dispersion Modeling for Odorant Tank

Gas Release						
Wind Category	Flammability Limits	Distance (m)	Height (m)	Cloud Width		
	UFL	12.05	0 - 0.09	1.25		
4.00 D	LFL	13.10	0 - 0.26	3.55		
	50 % LFL	13.80	0 - 0.33	13.80		

	Jet Fire							
Wind Category	Flame Length (m)	Heat Radiation (kW/m²)	Distance Downwind (m)	Distance Crosswind (m)	Lethality Level (%)			
		1.6	52.00	29.20	0			
	40.30	4	47.00	16.00	0			
4.00 D		9.5	42.00	7.80	0.72			
4.00 D		12.5	42.00	6.00	20% /60 sec.			
		25	40.00	3.00	80.34			
		37.5	38.00	2.00	98.74			

	Explosion Overpressure						
Wind Category	Pressure Value	Over Pressure Radius (m)		Overpressure Waves			
Category	(bar)	Early	Late	Effect / Damage			
	0.020	N/D	25	0.021 bar	Probability of serious damage beyond this point = 0.05 - 10 % glass broken		
4.00 D	0.137	N/D	14	0.137 bar	Some severe injuries, death unlikely		
	0.206	N/D	13	0.206 bar	Steel frame buildings distorted / pulled from foundation		

Page 77 of 110

Date: Aug. 2018

Document Title: Quantitative Risk Assessment "QRA" Study For Atfih Pressure Reduction & Metering Station

Figure (32) Vapor Cloud (UFL/LFL) Side View Graph (Odorant leak)

- The previous figures show that if there is a leak from odorant tank without ignition the flammable vapors will reach a distance more than 13 m downwind and from 0 to 0.33 m height (the vapors heavier than air).
- The UFL (2.1E+04 ppm) will reach a distance of about 12.05 m downwind with a height from 0 to 0.09 m. The cloud large width will be 1.25 m crosswind.
- The LFL (1.4E+04 ppm) will reach a distance of about 13.10 m downwind with a height from 0 to 0.26 m. The cloud large width will be 3.55 m crosswind.
- The 50 % LFL (7000 ppm) will reach a distance of about 13.80 m downwind with a height from 0 to 0.33 m. The cloud large width will be 13.80 m crosswind.

The modeling shows that the vapor cloud will be limited inside the PRMS boundary.

Consideration should be taken when deal with liquid, vapors and smokes according to the MSDS for the material.

PETROSAFE

Egyptian Natural Gas Holding Company "EGAS"

Page 78 of 110

Date: Aug. 2018

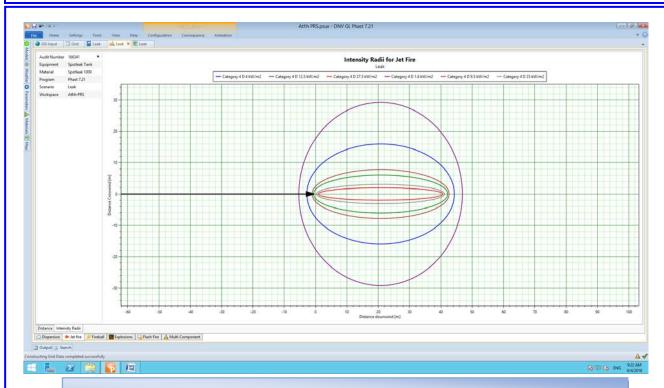


Figure (33) Heat Radiation Contours - Jet Fire Graph (Odorant Leak)

Figure (34) Heat Radiation Contours - Jet Fire on Site (Odorant Leak)

PETROSAFE

EGAS

Page 79 of 110

Date: Aug. 2018

Egyptian Natural Gas Holding Company "EGAS"

Document Title: Quantitative Risk Assessment "QRA" Study For Atfih Pressure Reduction & Metering Station

- The previous figure show that if there is a leak from the odorant tank and ignited the expected flame length is about 40 meters downwind.
- The 9.5 kW/m² heat radiation contours extend about 42 meters downwind and 7.80 meters crosswind.
- The 12.5 kW/m² heat radiation contours extend about 42 meters downwind and 6 meters crosswind.
- The 25 kW/m² heat radiation contours extend about 40 meters downwind and 3 meters crosswind.
- The 37.5 kW/m² heat radiation contours extend about 38 meters downwind and 2 meters crosswind.

The modeling shows that the heat radiation of $(9.5, 12.5, 25 \& 37.5 \text{ kW/m}^2)$ effects will extend outside from the north to reach about 7 meters downwind.

PETROSAFE

Egyptian Natural Gas Holding Company "EGAS"

Page 80 of 110

Date: Aug. 2018

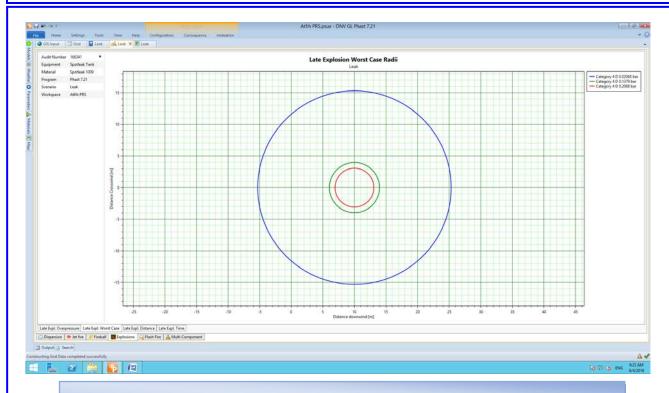


Figure (35) Late Explosion Overpressure Waves Graph (Odorant Leak)

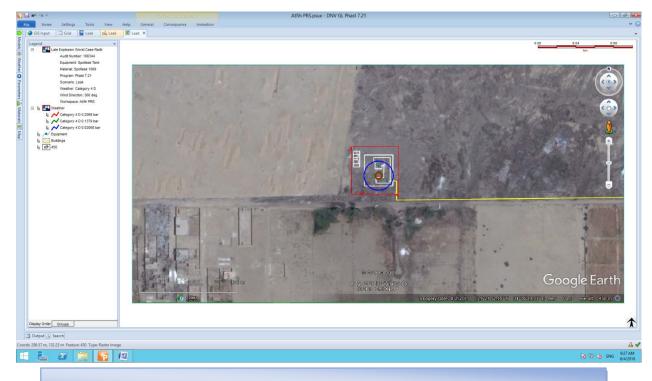


Figure (36) Late Explosion Overpressure Waves on Site (Odorant Leak)

PETROSAFE

EGAS
Egyptian Natural Gas Holding Company "EGAS"

Page 81 of 110

Date: Aug. 2018

Document Title: Quantitative Risk Assessment "QRA" Study For Atfih Pressure Reduction & Metering Station

- The previous figure show that if there is a leak from the odorant tank and late ignited this will give an explosion with different values of overpressure waves.
- The 0.020 bar overpressure waves will extend about 25 meters downwind.
- The 0.137 bar overpressure waves will extend about 14 meters downwind.
- The 0.206 bar overpressure waves will extend about 13 meters downwind.

The modeling shows that all values will be limited inside the PRMS boundary with no direct effects on offices.

Page 82 of 110

Date: Aug. 2018

Document Title: Quantitative Risk Assessment "QRA" Study For Atfih Pressure Reduction & Metering Station

4.0- Pressure Reduction Station Off-Take Pipeline (6 inch)

4/1- Consequence Modeling for 1 inch (Pin Hole) Gas Release

The following table no. (22) Show that:

Table (22) Dispersion Modeling for Off-take - 1" / 6" Gas Release

Gas Release						
Wind Category	Flammability Limits	Distance (m)	Height (m)	Cloud Width		
	UFL	0.052	1.53	0.10		
4.00 D	LFL	0.33	2.65	0.33		
	50 % LFL	0.75	3.30	0.75		

	Jet Fire							
Wind Category	Flame Length (m)	Heat Radiation (kW/m²)	Distance Downwind (m)	Distance Crosswind (m)	Lethality Level (%)			
		1.6	10.00	5.60	0			
	3.80	4	2.70	1.60	0			
4.00 D		9.5	Not Reached	Not Reached	0			
4.00 D		12.5	Not Reached	Not Reached	20% /60 sec.			
		25	Not Reached	Not Reached	80.34			
		37.5	Not Reached	Not Reached	98.74			

Explosion Overpressure						
Wind Pressure Value Category (bar)		Over Pressure Radius (m)		Overpressure Waves		
Category	(bar)	Early	Late		Effect / Damage	
	0.020	N/D	N/D	0.021 bar	Probability of serious damage beyond this point = 0.05 - 10 % glass broken	
4.00 D	0.137	N/D	N/D	0.137 bar	Some severe injuries, death unlikely	
	0.206	N/D	N/D	0.206 bar	Steel frame buildings distorted / pulled from foundation	

PETROSAFE

EGAS
Egyptian Natural Gas Holding Company "EGAS"

Page 83 of 110

Date: Aug. 2018

Document Title: Quantitative Risk Assessment "QRA" Study For Atfih Pressure Reduction & Metering Station

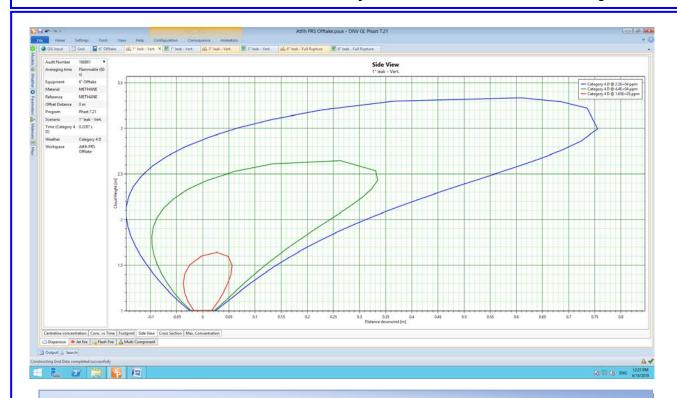


Figure (37) Gas Cloud Side View (UFL/LFL) (1" hole in 6" off-take Pipeline)

- The previous figure shows that if there is a gas release from 1" hole size without ignition the flammable vapors will reach a distance more than 0.75 m downwind and 3.30 m height.
- The UFL will reach a distance of about 0.052 m downwind with a height of 1.53 m. The cloud large width will be 0.10 m.
- The LFL will reach a distance of about 0.33 m downwind with a height of 2.65 m. The cloud large width will be 0.33 m.
- The 50 % LFL will reach a distance of about 0.75 m downwind with a height 3.30 m. The cloud large width will be 0.75 m.

The modeling shows that the gas cloud effects will be limited inside the off-take boundary.

PETROSAFE

EGAS
Egyptian Natural Gas Holding Company "EGAS"

Page 84 of 110

Date: Aug. 2018

Document Title: Quantitative Risk Assessment "QRA" Study For Atfih Pressure Reduction & Metering Station

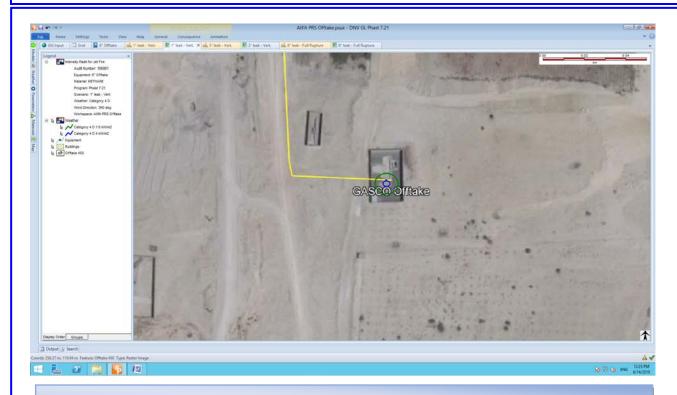


Figure (38) Heat Radiation Contours from Jet Fire (1" hole in 6" off-take Pipeline)

- The previous figure show that if there is a gas release from 1" hole size and ignited the expected flame length is about 3.80 meters height.
- The 1.6 kW/m² heat radiation contours extend about 10 meters downwind and 5.60 meters crosswind.
- The 4 kW/m² heat radiation contours extend about 2.70 meters downwind and 1.60 meters crosswind.
- The 9.5 kW/m² heat radiation not determined.
- The 12.5 kW/m² heat radiation not determined.
- The 25 kW/m² heat radiation not determined.
- The 37.5 kW/m² heat radiation not determined.

The modeling shows that the heat radiation values of 1.6 & 4 kW/m² will be limited inside the off-take boundary.

The values of 9.5, 12.5, 25 & 37.5 kW/ m^2 not determined by the software as it is very small values.

Page 85 of 110

Date: Aug. 2018

Egyptian Natural Gas Holding Company "EGAS"

Document Title: Quantitative Risk Assessment "QRA" Study For Atfih Pressure Reduction & Metering Station

4/2- Consequence Modeling for 3 inch (Half Rup.) Gas Release

The following table no. (23) Show that:

Table (23) Dispersion Modeling for Off-take - 3" / 6" Gas Release

Gas Release						
Wind Category	Flammability Limits	Distance (m)	Height (m)	Cloud Width		
	UFL	0.15	3.40	0.30		
4.00 D	LFL	1.00	7.40	1.20		
	50 % LFL	2.40	10.20	2.00		

	Jet Fire							
Wind Category	Flame Length (m)	Heat Radiation (kW/m²)	Distance Downwind (m)	Distance Crosswind (m)	Lethality Level (%)			
	12.22	1.6	32.20	16.80	0			
		4	8.70	6.20	0			
4.00 D		9.5	Not Reached	Not Reached	0.72			
4.00 D		12.5	Not Reached	Not Reached	20% /60 sec.			
		25	Not Reached	Not Reached	80.34			
		37.5	Not Reached	Not Reached	98.74			

	Explosion Overpressure						
Wind Category	Pressure Value	Over Pressure Radius (m)		Overpressure Waves			
Category	(bar)	Early	Late	- Effect / Damage			
	0.020	N/D	N/D	0.021 bar	Probability of serious damage beyond this point = 0.05 - 10 % glass broken		
4.00 D	0.137	N/D	N/D	0.137 bar	Some severe injuries, death unlikely		
	0.206	N/D	N/D	0.206 bar	Steel frame buildings distorted / pulled from foundation		

PETROSAFE

EGAS
Egyptian Natural Gas Holding Company "EGAS"

Page 86 of 110

Date: Aug. 2018

Document Title: Quantitative Risk Assessment "QRA" Study For Atfih Pressure Reduction & Metering Station

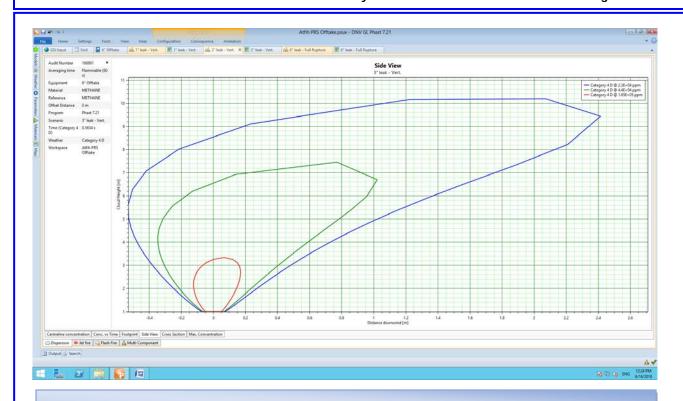


Figure (39) Gas Cloud Side View (UFL/LFL) (3" hole in 6" off-take Pipeline)

- The previous figure shows that if there is a gas release from 3" hole size without ignition the flammable vapors will reach a distance more than 10 m downwind and 2 m height.
- The UFL will reach a distance of about 0.15 m downwind with a height of 3.40 m. The cloud large width will be 0.30 m.
- The LFL will reach a distance of about 1 m downwind with a height of 7.40 m. The cloud large width will be 1.20 m.
- The 50 % LFL will reach a distance of about 2.40 m downwind with a height of 10.20 m. The cloud large width will be 2 m.

The modeling shows that the gas cloud effects will be limited inside the off-take boundary.

PETROSAFE

EGAS
Egyptian Natural Gas Holding Company "EGAS"

Page 87 of 110

Date: Aug. 2018

Document Title: Quantitative Risk Assessment "QRA" Study For Atfih Pressure Reduction & Metering Station

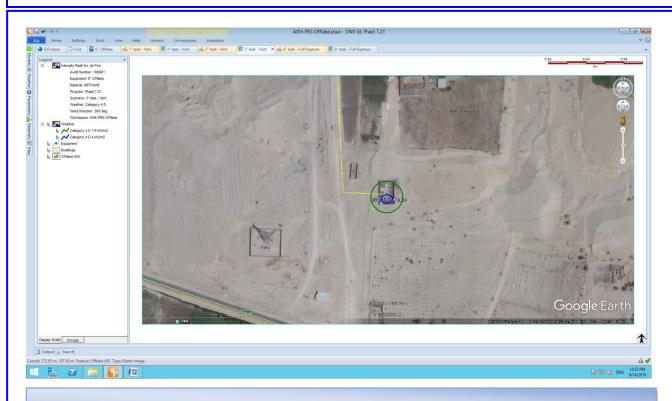


Figure (40) Heat Radiation Contours from Jet Fire (3" hole in 6" off-take Pipeline)

- The previous figure show that if there is a gas release from 3" hole size and ignited the expected flame length is about 12 meters height.
- The 1.6 kW/m² heat radiation contours extend about 32.20 meters downwind and 16.80 meters crosswind.
- The 4 kW/m² heat radiation contours extend about 8.70 meters downwind and 6.20 meters crosswind.
- The 9.5 kW/m² heat radiation not determined.
- The 12.5 kW/m² heat radiation not determined.
- The 25 kW/m² heat radiation not determined.
- The 37.5 kW/m² heat radiation not determined.

The modeling shows that the heat radiation value of 1.6 will extend outside the off-take boundary from south, east and west sides with a few meters.

The modeling shows that the heat radiation value of $\& 4 \text{ kW/m}^2$ will be limited inside the off-take boundary.

The values of 9.5, 12.5, 25 & 37.5 kW/ m^2 not determined by the software as it is very small values.

Egyptian Natural Gas Holding Company "EGAS"

Page 88 of 110

Date: Aug. 2018

Document Title: Quantitative Risk Assessment "QRA" Study For Atfih Pressure Reduction & Metering Station

4/3- Consequence Modeling for 6 inch (Full Rup.) Gas Release

The following table no. (24) Show that:

Table (24) Dispersion Modeling for Off-take - 6" Gas Release

Gas Release						
Wind Category Flammability Limits Distance (m) Height (m) Cloud Width (m)						
	UFL	0.50	7.50	0.90		
4.00 D	LFL	3.10	16.50	3.60		
	50 % LFL	6.90	22.50	18.00		
	Jet Fire					

Jet Fire							
Wind Category	Flame Length (m)	Heat Radiation (kW/m²)	Distance Downwind (m)	Distance Crosswind (m)	Lethality Level (%)		
	40.00	1.6	71.00	47.00	0		
		4	52.00	29.60	0		
4.00 D		9.5	40.00	17.60	0		
4.00 D		12.5	36.70	14.30	20% /60 sec.		
		25	30.00	7.20	80.34		
		37.5	22.60	8.00	98.74		

Explosion Overpressure						
Wind Pressure Value		Over Pressure Radius (m)		Overpressure Waves		
Category	(bar)	Early	Late	Effect / Damage		
	0.020	N/D	N/D	0.021 bar	Probability of serious damage beyond this point = 0.05 - 10 % glass broken	
4.00 D	0.137	N/D	N/D	0.137 bar	Some severe injuries, death unlikely	
	0.206	N/D	N/D	0.206 bar	Steel frame buildings distorted / pulled from foundation	

		Fireball	
Wind Category	Heat Radiation (kW/m²)	Distance (m)	Heat Radiation (kW/m²) Effects on People & Structures
	1.6	Not Determined	12.5 20 % Chance of fatality for 60 sec
	4	Not Determined	exposure 25
4.00 D	9.5	Not Determined	100 % Chance of fatality for continuous exposure
4.00 D	12.5	Not Determined	50 % Chance of fatality for 30 sec
	25	Not Determined	exposure 37.5
	37.5	Not Determined	Sufficient of cause process equipment damage

PETROSAFE

EGAS
Egyptian Natural Gas Holding Company "EGAS"

Page 89 of 110

Date: Aug. 2018

Document Title: Quantitative Risk Assessment "QRA" Study For Atfih Pressure Reduction & Metering Station

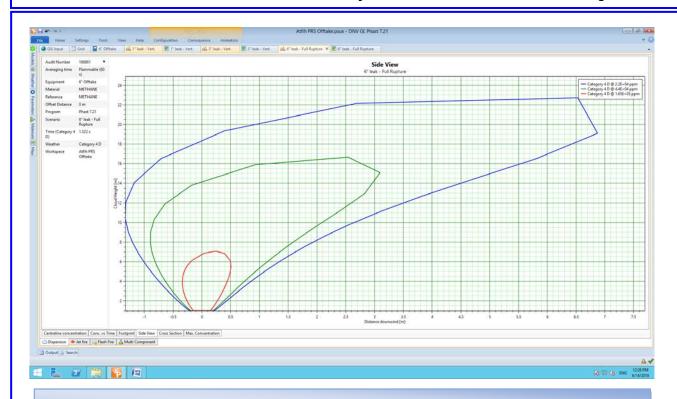


Figure (41) Gas Cloud Side View (UFL/LFL) (6" off-take Pipeline Full Rupture)

- The previous figure show that if there is a gas release from 6" pipeline full rupture without ignition the flammable vapors will reach a distance more than 6 m downwind and over 22 m height.
- The UFL will reach a distance of about 0.50 m downwind with a height of 7.50 m. The cloud large width will be 0.90 m.
- The LFL will reach a distance of about 3.10 m downwind with a height of 16.50 m. The cloud large width will be 3.60 m.
- The 50 % LFL will reach a distance of about 6.90 m downwind with a height of 22.50 m. The cloud large width will be 18 m.

The modeling shows that the gas cloud will be limited inside the off-take boundary downwind with some extension from east and west sides.

PETROSAFE

EGAS
Egyptian Natural Gas Holding Company "EGAS"

Page 90 of 110

Date: Aug. 2018

Document Title: Quantitative Risk Assessment "QRA" Study For Atfih Pressure Reduction & Metering Station

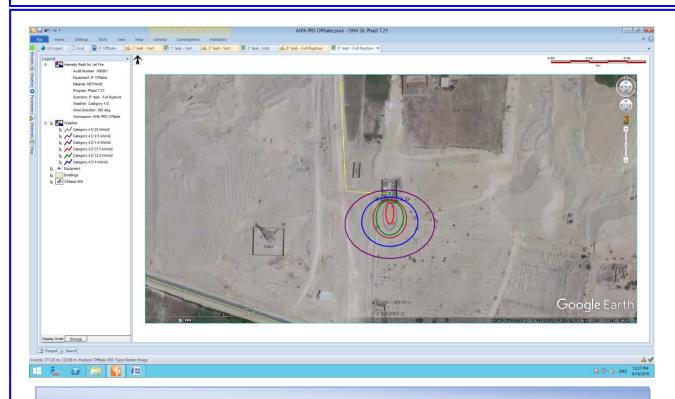


Figure (42) Heat Radiation Contours from Jet Fire (6" off-take Pipeline Full Rupture)

- The previous figure show that if there is a gas release from 6" pipeline full rupture and ignited the expected flame length is about 40 meters height.
- The 9.5 kW/m² heat radiation contours extend about 40 meters downwind and 17.60 meters crosswind.
- The 12.5 kW/m² heat radiation contours extend about 36.70 meters downwind and 14.30 meters crosswind.
- The 25 kW/m² heat radiation contours extend about 30 meters downwind and 7.20 meters crosswind.
- The 37.5 kW/m² heat radiation contours extend about 22.60 meters downwind and 8 meters crosswind.

The modeling shows that the heat radiation values will extend outside the off-take boundary from west side downwind with about 50 m and not reach of any of the surroundings.

Page 91 of 110

Date: Aug. 2018

Document Title: Quantitative Risk Assessment "QRA" Study For Atfih Pressure Reduction & Metering Station

Individual Risk Evaluation

Risk Calculation

All identified hazards should be subject to an evaluation for risk potential. This means analyzing the hazard for its probability to actually progress to loss event, as well as likely consequences of this event.

There are four steps to calculate risk, which determined as follows:

- 1- Identify failure frequency (International Data Base)
- 2- Calculating the frequency against control measures at site by using Event Tree Analysis "ETA".
- 3- Identify scenarios probability.
- 4- Calculated risk to people regarding to the vulnerability of life loses.

Basically, risk will be calculated as presented in the following equation:

Risk to people (Individual Risk – IR) =

Total Risk (ΣFrequency of fire/explosion) x Occupancy x Vulnerability

Where:

-	<u>Total risk</u>	Is the sum of contributions from all hazards exposed to (fire / explosion).
-	<u>Occupancy</u>	Is the proportion of time exposed to work hazards. (Expected that x man the most exposed person to fire/explosion hazards on site. He works 8 hours shift/day)
-	<u>Vulnerability</u>	Is the probability that exposure to the hazard will result in fatality.

As shown in tables (5 & 6) – (Page: 33 & 34) the vulnerability of people to heat radiation starting from 12 kW/m² will lead to fatality accident for 60 sec. Exposure and for explosion over pressure starting from 0.137 bar.

PETROSAFE

EGAS
Egyptian Natural Gas Holding Company "EGAS"

Page 92 of 110

Date: Aug. 2018

Document Title: Quantitative Risk Assessment "QRA" Study For Atfih Pressure Reduction & Metering Station

The modeling of the different scenarios shows that the heat radiation and explosion overpressure waves would be a result from release scenarios for all sizes of crack and according to the space size for the PRMS, all of the sequence will be determined for three values release (small, medium and large).

Calculating frequencies needs a very comprehensive calculations which needs a lot of data collecting related to failure of equipment's and accident reporting with detailed investigation to know the failure frequency rates in order to calculate risks from scenarios.

In this study, it decided that to use an International Data Bank for major hazardous incident data.

The following table (25) show frequency for each failure can be raised in pressure reduction station operations:

PETROSAFE

Date: Aug. 2018

Page 93 of 110

Egyptian Natural Gas Holding Company "EGAS"

Document Title: Quantitative Risk Assessment "QRA" Study For Atfih Pressure Reduction & Metering Station

Table (25) Failure Frequency for Each Scenario

Scenario	Release Size		
Gas Release from 1"/6" Pipeline	Small		
1"/8" Pipeline		Failure Cause	Failure Rate
		Internal Corrosion	1.19E-05
		External Corrosion	3.55E-06
		Maintenance Error	2.28E-05
		Corrosive Liquid or Gas	4.84E-04
		Total	5.22E-04
Gas Release from	Medium		
3"/6" Pipeline 4"/8" Pipeline		Failure Cause	Failure Rate
		Internal Corrosion	2.71E-05
		External Corrosion	8.24E-06
		Erosion	4.85E-04
		Total	5.20E-04
Gas Release from	Large		
6"/8" Pipeline Full Rupture		Failure Cause	Failure Rate
		Internal Corrosion	5.53E-06
		External Corrosion	1.61E-06
		Weld Crack	4.34E-06
		Earthquake	1.33E-07
		Total	1.16E-05
Spotleak	Medium		
(Odorant Tank)		As a package	Failure Rate
Reference: Taylor Associates ApS - 2006 Hazardous Materials Release and Acc Plant - Volume II / Process Unit Release			1.25E-05

PETROSAFE

EGAS
Egyptian Natural Gas Holding Company "EGAS"

Page 94 of 110

Date: Aug. 2018

Document Title: Quantitative Risk Assessment "QRA" Study For Atfih Pressure Reduction & Metering Station

• Event Tree Analysis

An event tree is a graphical way of showing the possible outcomes of a hazardous event, such as a failure of equipment or human error.

An ETA involves determining the responses of systems and operators to the hazardous event in order to determine all possible alternative outcomes.

The result of the ETA is a series of scenarios arising from different sets of failures or errors.

These scenarios describe the possible accident outcomes in terms of the sequence of events (successes or failures of safety functions) that follow the initial hazardous event.

Event trees shall be used to identify the various escalation paths that can occur in the process. After these escalation paths are identified, the specific combinations of failures that can lead to defined outcomes can then be determined.

This allows identification of additional barriers to reduce the likelihood of such escalation.

The results of an ETA are the event tree models and the safety system successes or failures that lead to each defined outcome.

Accident sequences represents in an event tree represent logical and combinations of events; thus, these sequences can be put into the form of a fault tree model for further qualitative analysis.

These results may be used to identify design and procedural weaknesses, and normally to provide recommendations for reducing the likelihood and/or consequences of the analyzed potential accidents.

Using ETA requires knowledge of potential initiating events (that is, equipment failures or system upsets that can potentially cause an accident), and knowledge of safety system functions or emergency procedures that potentially mitigate the effects of each initiating event.

PETROSAFE

EGAS
Egyptian Natural Gas Holding Company "EGAS"

Page 95 of 110

Date: Aug. 2018

Document Title: Quantitative Risk Assessment "QRA" Study For Atfih Pressure Reduction & Metering Station

The equipment failures, system upsets and safety system functions shall be extracted from the likelihood data presented before.

In the case of hydrocarbon release, the event tree first branch is typically represents "Early Ignition". These events are represented in the risk analysis as jet fire events.

This is because sufficient time is unlikely to elapse before ignition for a gas/air mixture to accumulate and cause either a flash fire or a gas hazard.

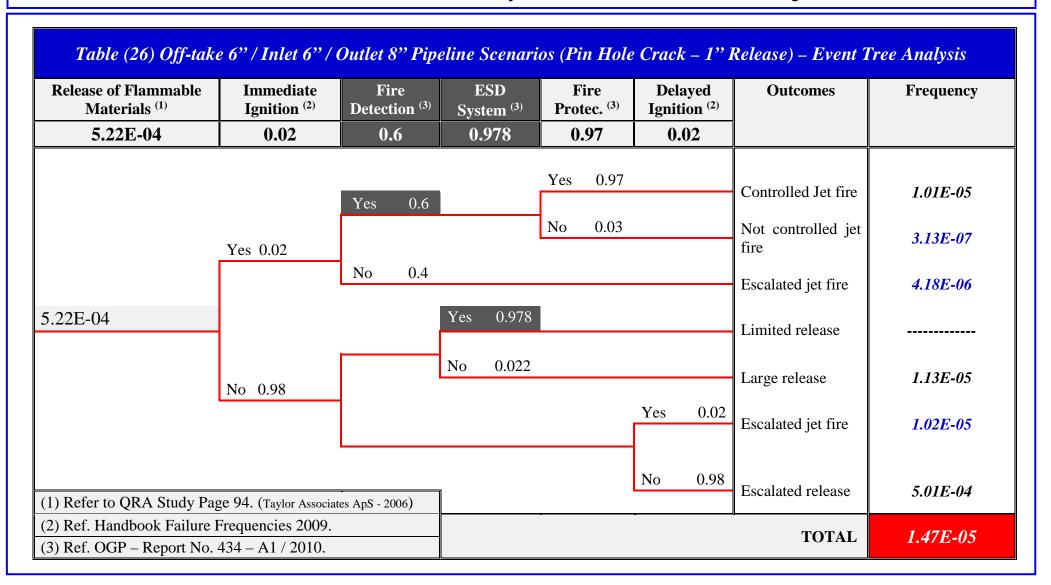
Subsequent branches for these events represent gas detection, fire detection, inventory isolation (or ESD) or deluge activation.

Delayed ignitions are typically represented by the fifth branch event. This is because, in the time taken for an ignition to occur, sufficient time is more likely to elapse for gas detection and inventory isolation.

The scenario development shall be performed for the following cases:

- Without any control measures
- With control measures

The event tree analysis outcomes can be classified into three main categories as follows:

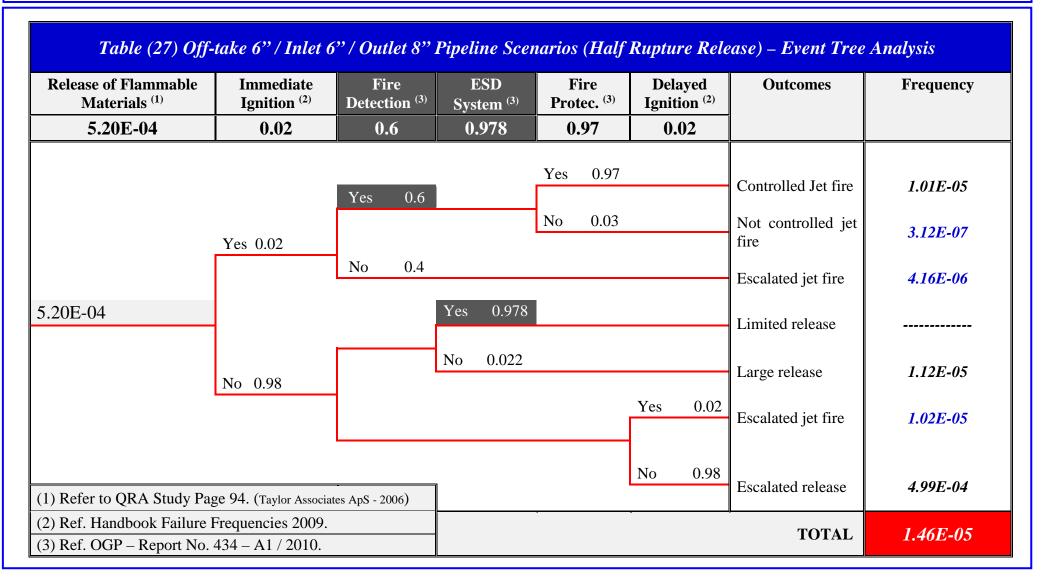

"Limited Consequence"	Indicates that the release has been detected and the inventory source has been isolated automatically.
"Controlled Consequence"	Indicates that the release has been detected but the source has not been isolated automatically. [Needs human intervention].
"Escalated Consequence"	Indicates that the release has not been detected and consequently the source has not been isolated.

The event trees analysis for each scenario are presented in the below pages:

Page 96 of 110

Date: August 2018

Document Title:

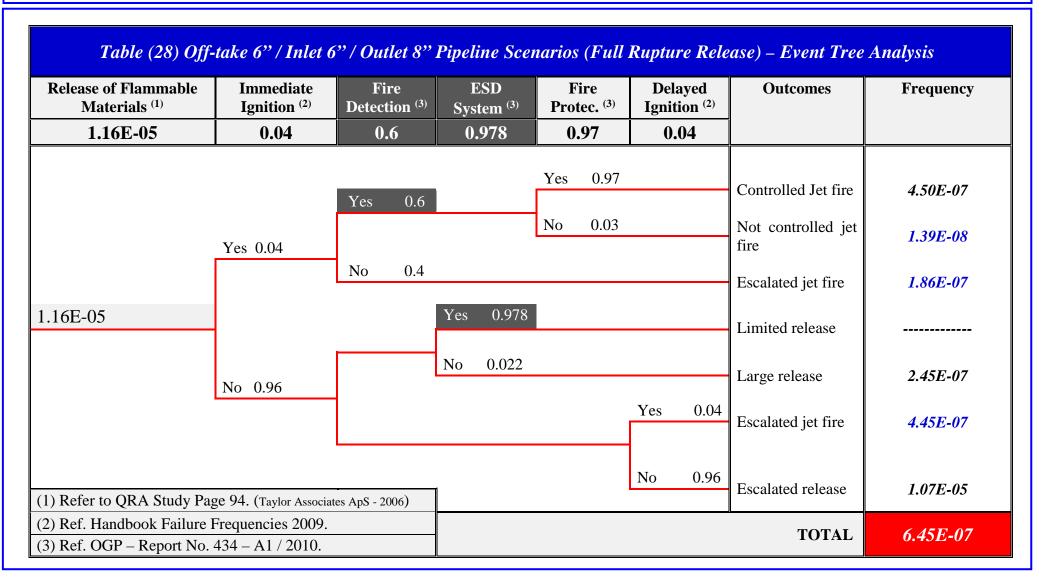


Page 97 of 110

Date: August 2018

Egyptian Natural Gas Holding Company "EGAS"

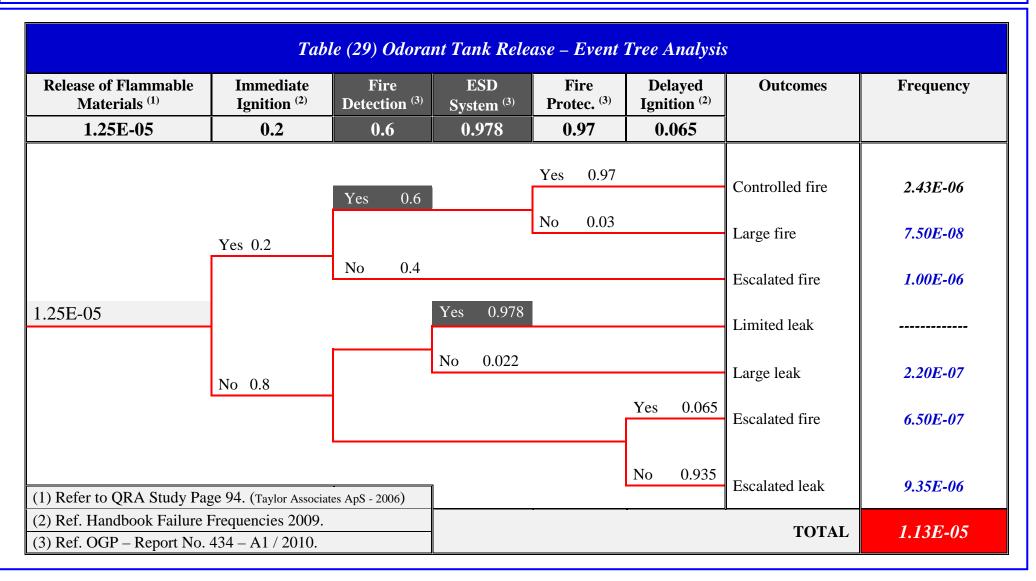
Document Title:


PETROSAFE

Page 98 of 110

Date: August 2018

Document Title:



Egyptian Natural Gas Holding Company "EGAS"

Date: August 2018

Page 99 of 110

Document Title:

Tables (26 to 29):

EGAS

Page 100 of 110

Date: Aug. 2018

Egyptian Natural Gas Holding Company "EGAS"

The following table (30) show the total frequency for each scenario from ETA -

Document Title: Quantitative Risk Assessment "QRA" Study For Atfih Pressure Reduction & Metering Station

Table (30) Total Frequencies for Each Scenario

Source of Release	Total Frequency (ETA)
1" / 6" Off-Take Pipeline Pin Hole	
1" / 6" Inlet Pipeline Pin Hole	1.47E-05
1" / 8" Outlet Pipeline Pin Hole	
3" / 6" Off-Take Pipeline Half Rupture	
3" / 6" Inlet Pipeline Half Rupture	1.46E-05
4" / 8" Outlet Pipeline Half Rupture	
6" Off-Take Pipeline Full Rupture	
6" Inlet Pipeline Full Rupture	6.45E-07
8" Outlet Pipeline Full Rupture	
Odorant Tank 1" hole Leak	1.13E-05

The following table (31) summarize the risk events on workers / public:

Table No. (31) Summarize the Risk on Workers / Public (Occupancy)

Off-take 6" Pipeline Release Scenarios						
	Event	Jet / Pool Fire	(12.5 kW/m^2)	Explosion Overpr	Explosion Overpressure (0.020 bar)	
	Exposure	Workers	Public	Workers	Public	
Pin Hole	1"	None	None	None	None	
Half Rupture	3"	None	None	None	None	
Full Rupture	6"	None	None	None	None	
Inlet 6" Pipel	Inlet 6" Pipeline Release Scenarios					
Pin Hole	1"	None	None	None	None	
Half Rupture	3"	None	None	None	None	
Full Rupture	6"	None	1 for 15 min.	None	None	
Outlet 8" Pip	eline Rel	ease Scenarios				
Pin Hole	1"	None	None	None	None	
Half Rupture	4"	None	None	None	None	
Full Rupture 8"		2 for 24 hours	1 for 15 min.	None	1 for 15 min.	
Odorant Tan	k Release	e Scenario				
Small Leak	1"	None	1 for 15 min.	None	None	

EGAS

Page 101 of 110

Date: Aug. 2018

Egyptian Natural Gas Holding Company "EGAS"

Document Title: Quantitative Risk Assessment "QRA" Study For Atfih Pressure Reduction & Metering Station

Therefore, the risk calculation will depend on total risk from these scenarios, and as per the equation page (92):

<u>Risk to People (Individual Risk – IR) =</u>

Total Risk (Σ Frequency of fire/explosion) x Occupancy x Vulnerability Where:

- Total risk - is the sum of contributions from all hazards exposed to (fire / explosion).

(Frequencies of Scenarios from Table-30)

- Occupancy - is the proportion of time exposed to work hazards. (Expected that x man the most exposed person to fire/explosion hazards on site. He works 8 hours shift/day).

(As per client data, Atfih PRMS occupancy is 4 persons / 24 hours)

(As per site visit to PRMS, the most exposed is 1 person for 15 min. from Sewage Dumping Truck, for the Off-take no persons exposed to the risk events "Table 31")

- Vulnerability - is the probability that exposure to the hazard will result in fatality.

(Reference: Report No./DNV Reg. No.: 2013-4091/1/17 TLT 29-6 - Rev. 1)

As per modeling, the IR will be calculated for the workers and the public around the PRMS (who passing on front of) as per the following tables (32 & 33):

Page 102 of 110

Date: Aug. 2018

Egyptian Natural Gas Holding Company "EGAS"

Table (32) Individual Risk (IR) Calculation for the Workers

Document Title: Quantitative Risk Assessment "QRA" Study For Atfih Pressure Reduction & Metering Station

Source of Event	Frequency 1	Heat Radiation kW/m² & Overpressure	Vulnerability 2	Time Exposed 3	IR = 1 x 2 x 3
Gas Release from 8" outlet Pipeline	6.45E-07	Jet Fire 12.5	0.1 (Indoor)	2 ^{2 Pers.}	1.29E-07
	TOTAL Risk for Workers 1.29E-				

Table (33) Individual Risk (IR) Calculation for the Public

Source of Event	Frequency 1	Heat Radiation kW/m² & Overpressure	Vulnerability 2	Time Exposed 3	IR = 1 x 2 x 3
Gas release from 6" inlet pipeline	6.45E-07	Jet Fire 12.5	0.7 (Outdoor)	0.01 ^{1 Pers.}	4.52E-09
Gas release	6.45E-07	Jet Fire 12.5	0.7 (Outdoor)	0.01 ^{1 Pers.}	4.52E-09
from 8" outlet pipeline	0.43E-07	Explosion 0.137	0.3 (Outdoor)	0.01 ^{1 Pers.}	1.94E-09
Odorant tank 1" leak	1.13E-05	Jet Fire 12.5	0.7 (Outdoor)	0.01 ^{1 Pers.}	7.91E-08
	TOTAL Risk for Public 9.01E-08				

Date: Aug. 2018

Page 103 of 110

Egyptian Natural Gas Holding Company "EGAS"

Document Title: Quantitative Risk Assessment "QRA" Study For Atfih Pressure Reduction & Metering Station

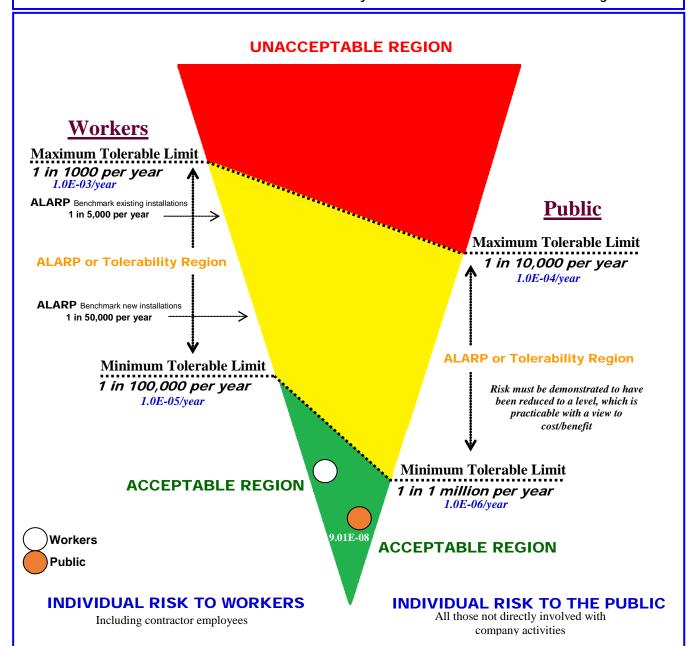


Figure (43) Evaluation of Individual Risk

The level of Individual Risk to the exposed worker at Atfih PRMS, based on the risk tolerability criterion used is <u>Acceptable</u>.

The level of Individual Risk to the exposed Public at Atfih PRMS area, based on the risk tolerability criterion used is <u>Acceptable</u>.

PETROSAFE

Egyptian Natural Gas Holding Company "EGAS"

Page 104 of 110

Date: Aug. 2018

Document Title: Quantitative Risk Assessment "QRA" Study For Atfih Pressure Reduction & Metering Station

Summary of Modeling Results and Conclusion

As per results from modeling the consequences of each scenario, the following table summarize the study, and as follows:

Event	Scenario	Effects
Pin hole (1") gas release 6	" inlet pipeline	
	Gas cloud UFL LFL 50 % LFL	The modeling shows that the gas cloud effects will be limited inside the PRMS boundary.
	Heat radiation / Jet fire 9.5 kW/m ² 12.5 kW/m ²	The modeling shows that the heat radiation value of 4 kW/m² will be limited inside the PRMS boundary. The values of 9.5, 12.5, 25 & 37,5 kW/m² not determined by the software due to small amount of the gas released.
	Early explosion 0.020 bar 0.137 bar 0.206 bar	N/D
	Late explosion 0.020 bar 0.137 bar 0.206 bar	N/D
Half Rupture (3") gas relea	ase 6" inlet pipeline	
	Gas cloud UFL LFL 50 % LFL	The modeling shows that the gas cloud (50 % LFL) will extend outside the PRMS from the north side downwind.
	Heat radiation / Jet fire 9.5 kW/m ² 12.5 kW/m ²	All values will extend outside the N fence downwind with various distances to 25 (1.6 kW/m²).
	Early explosion 0.020 bar 0.137 bar 0.206 bar	N/D
	Late explosion 0.020 bar 0.137 bar 0.206 bar	The modeling shows that the value of 0.020, 0.137 bar and 0.206 bar will extended outside the PRMS boundary from north and east sides reaching the outside road downwind (north side).

Prepared By: **PETROSAFE**

Egyptian Natural Gas Holding Company "EGAS"

Page 105 of 110

Date: Aug. 2018

Event	Scenario	Effects
Full Rupture gas release	6" inlet pipeline	
	Gas cloud UFL LFL 50 % LFL	The modeling shows that the gas cloud effects (LFL & 50 % LFL) will extend outside the N fence reaching a distance of about 74 m from the north fence downwind.
	Heat radiation / Jet fire 9.5 kW/m ² 12.5 kW/m ²	The modeling shows that the heat radiation values will extend outside the PRMS north fence reaching a distance from 5 to 45 meters downwind. The security office will be effected from 1.6 and 4 kW/m ² crosswind.
	Early explosion 0.020 bar 0.137 bar 0.206 bar	N/D
	Late explosion 0.020 bar 0.137 bar 0.206 bar	The modeling shows that the value of 0.020 bar, 0.137 bar & 0.206 bar will extend outside the PRMS boundary from north side by a distance from 5 to 175 meters downwind.
	Heat radiation / Fireball 9.5 kW/m ² 12.5 kW/m ²	N/D
Pin hole (1") gas release	8" outlet pipeline	
	Gas cloud UFL LFL 50 % LFL	The modeling shows that the gas cloud will be limited inside the PRMS boundary.
	Heat radiation / Jet fire 9.5 kW/m ² 12.5 kW/m ²	The modeling shows that the heat radiation value (9.5 kW/m² & 12.5 kW/m²) effects will be limited inside the PRMS boundary downwind affecting the PRMS facilities.
	Early explosion 0.020 bar 0.137 bar 0.206 bar	The modeling shows that the value of 0.020 bar will extend outside the PRMS boundary from all sides covering the office and security buildings down and crosswind (north and west sides), reaching the outside road (north side). The value of 0.137 bar and 0.206 bar will be limited inside the PRMS boundary affecting the PRMS facilities.

PETROSAFE

EGAS

Page 106 of 110

Date: Aug. 2018

Egyptian Natural Gas Holding Company "EGAS"

Event	Scenario	Effects
	Late explosion 0.020 bar 0.137 bar 0.206 bar	N/D
Half Rupture (4") gas relea	se 8" outlet pipeline	-
	Gas cloud UFL LFL 50 % LFL	The modeling shows that the gas cloud (UFL, LFL & 50% LFL) will limited inside the PRMS boundary.
	Heat radiation / Jet fire 9.5 kW/m ² 12.5 kW/m ²	The modeling shows that the heat radiation values of 9.5, 12.5, 25 & 37.5 kW/m² will be limited inside the PRMS boundary affecting the PRMS facilities. The values of 1.6 & 4 kW/m² will affects the security office crosswind and reaching the north corner of the admin office (1.6) upwind.
	Early explosion 0.020 bar 0.137 bar 0.206 bar	The modeling shows that the value of 0.020 bar will extend outside the PRMS boundary from all sides covering the office and security buildings down and crosswind (north and west sides), reaching the outside road (north side). The value of 0.137 bar and 0.206 bar will be limited inside the PRMS boundary affecting the PRMS facilities.
	Late explosion 0.020 bar 0.137 bar 0.206 bar	The modeling shows that the value of 0.020 bar will extend PRMS boundary covering the admin office inside and outside from north (13 m), east (15 m) and west (5 m) with no effects. The value of 0.137 bar and 0.206 bar will be limited inside the PRMS extend to the north side with no effects.
Full Rupture gas release 8'	outlet pipeline	
	Gas cloud UFL LFL 50 % LFL	The modeling shows that the gas cloud effects will be limited inside the PRMS boundary.
	Heat radiation / Jet fire 9.5 kW/m ² 12.5 kW/m ²	The modeling shows that all radiation values will extend outside the PRMS from north, east and west sides. The heat radiation values 9 & 12.5 kW/m² will cover the security office crosswind.

Prepared By: **PETROSAFE**

Page 107 of 110

Date: Aug. 2018

Egyptian Natural Gas Holding Company "EGAS"

Event	Scenario	Effects
	Early explosion 0.020 bar 0.137 bar 0.206 bar	The value of 0.137 bar and 0.206 bar will be limited inside the PRMS boundary affecting the PRMS facilities.
	Late explosion 0.020 bar 0.137 bar 0.206 bar	The modeling shows that the value of 0.020 bar will extend outside the PRMS boundary from north, east and west sides, covering the security office crosswind (west side). The value of 0.137 bar and 0.206 bar will be extend outside the PRMS from the north side near to the fence and outside road.
	Heat radiation / Fireball 9.5 kW/m ² 12.5 kW/m ²	The modeling shows that the heat radiation values of 9.5 & 12.5 kW/m² will be limited inside the PRMS boundary.
Odorant tank 1" leak		
	Gas cloud UFL LFL 50 % LFL	The modeling shows that the vapor cloud will be limited inside the PRMS boundary. Consideration should be taken when deal with liquid, vapors and smokes according to the MSDS for the material.
	Heat radiation / Jet fire 9.5 kW/m ² 12.5 kW/m ²	The modeling shows that the heat radiation of (9.5, 12.5, 25 & 37.5 kW/m²) effects will extend outside from the north to reach about 7 meters downwind.
	Early explosion 0.020 bar 0.137 bar 0.206 bar	N/D
	Late explosion 0.020 bar 0.137 bar 0.206 bar	The modeling shows that all values will be limited inside the PRMS boundary with no direct effects on offices.

PETROSAFE

EGAS

Page 108 of 110

Date: Aug. 2018

Egyptian Natural Gas Holding Company "EGAS"

Event	Scenario	Effects	
Pin hole (1") gas release 6" off-take pipeline			
	Gas cloud UFL LFL 50 % LFL	The modeling shows that the gas cloud effects will be limited inside the off-take boundary.	
	Heat radiation / Jet fire 9.5 kW/m ² 12.5 kW/m ²	The modeling shows that the heat radiation values of 1.6 & 4 kW/m² will be limited inside the off-take boundary. The values of 9.5, 12.5, 25 & 37.5 kW/m² not determined by the software as it is very small values.	
	Early explosion 0.020 bar 0.137 bar 0.206 bar	N/D	
	Late explosion 0.020 bar 0.137 bar 0.206 bar	N/D	
Half Rupture (3") gas release 6" off-take pipeline			
(°) g	Gas cloud UFL LFL 50 % LFL	The modeling shows that the gas cloud effects will be limited inside the off-take boundary.	
	Heat radiation / Jet fire 9.5 kW/m ² 12.5 kW/m ²	The modeling shows that the heat radiation value of 1.6 will extend outside the off-take boundary from south, east and west sides with a few meters. The modeling shows that the heat radiation value of & 4 kW/m² will be limited inside the off-take boundary. The values of 9.5, 12.5, 25 & 37.5 kW/m² not determined by the software as it is very small values.	
	Early explosion 0.020 bar 0.137 bar 0.206 bar	N/D	
	Late explosion 0.020 bar 0.137 bar 0.206 bar	N/D	

PETROSAFE

EGAS

Egyptian Natural Gas Holding Company "EGAS"

Page 109 of 110

Date: Aug. 2018

Document Title: Quantitative Risk Assessment "QRA" Study For Atfih Pressure Reduction & Metering Station

Event	Scenario	Effects
Full Rupture gas release 6" off-take pipeline		
	Gas cloud UFL LFL 50 % LFL	The modeling shows that the gas cloud will be limited inside the off-take boundary downwind with some extension from east and west sides.
	Heat radiation / Jet fire 9.5 kW/m ² 12.5 kW/m ²	The modeling shows that the heat radiation values will extend outside the off-take boundary from west side downwind with about 50 m and not reach of any of the surroundings.
	Early explosion 0.020 bar 0.137 bar 0.206 bar	N/D
	Late explosion 0.020 bar 0.137 bar 0.206 bar	N/D
	Heat radiation / Fireball 9.5 kW/m ² 12.5 kW/m ²	N/D

The previous table shows that there are some of potential hazards with heat radiation (12.5 kW/m 2) resulting from jet fire and explosion overpressure waves (0.137 bar) from late explosion events (Described in table 31)

These risks (Jet fire & Explosion overpressure waves) will affects the workers at the PRMS, and reach the public around the station (dumping area).

In addition, it is noted that there is no effects from off-take point on surrounding area.

Regarding to the risk calculations; the risk to <u>Workers and the Public (PRMS)</u> <u>found in Acceptable Region</u>, so there are some points need to be considered to keep the risk tolerability and this will be describe in the study recommendations.

Page 110 of 110

Date: Aug. 2018

Document Title: Quantitative Risk Assessment "QRA" Study For Atfih Pressure Reduction & Metering Station

Recommendations

As per results from modeling, the consequences of each scenario and risk calculations (as risks found in Acceptable region) and to keep the risk as found, it is recommended that:

- Ensure that
 - All PRMS facilities specifications referred to the national and international codes and standards.
 - Inspection and maintenance plans and programs are according to the manufacturers guidelines to keep all facility parts in a good condition.
 - All operations are according to standard operating procedures for the PRMS operations and training programs in-place for operators.
 - Emergency shutdown detailed procedure including emergency gas isolation points at the PRMS and GASCO valves room (Off-Take Point) in place.
 - Surface drainage system is suitable for containment any odorant spillage.
- Considering that all electrical equipment, facilities and connections are according to the hazardous area classification for natural gas facilities.
- Review the emergency response plan and update the plan to include all scenarios in this study and other needs including:
 - Firefighting brigades, mutual aids, emergency communications and fire detection / protection systems.
 - Dealing with the external road in case of major fires.
 - First aid including dealing with the odorant according to the MSDS for it, with respect of means of water supply for emergency showers, eye washers and cleaning.
 - Provide the site with SCBA "Self-Contained Breathing Apparatus (at least two sets) and arrange training programs for operators.
 - Emergency shutdown detailed procedure including shut-off points at the PRS and GASCO main line.
 - Safe exits in building according to the modeling in this study, and to the PRS from other side beside the designed exit in layout provided.
- Provide a suitable tool for wind direction (Windsock) to be installed in a suitable place to determine the wind direction (the PRMS lay-out need to be reviewed for wind direction correction)
- Cooperation should be done with the concerned parties before planning for housing projects around the PRMS area.