

Petroleum Safety & Environmental Services Co. An Egyptian Oil Sector Company

شركة الخدمات البترولية للسلامة والبيئة إحدى شركات قطاع البترول

Prepared By Petroleum Safety and Environmental Services Company PETROSAFE

March 2020

Prepared By: PETROSAFE			1	Page 1 of 115
		Egyptian Natural Gas Holding Company "EGAS"		Date: March 2020
Document Title: Quan	titative Ris		/ For Qaha Pressure Reduction	& Metering Station
Title		tive Risk Assessment - Qalyoubeyia Governor	Study For Qaha New Pre ate	essure Reduction
Customer	Egyptian	n Natural Gas Holding C	ompany "EGAS"	
Customer Reference	EGAS/Q	PRA/02/2015-MG/MS		
Confidentiality, Copyright and Reproduction	contract confiden	to supply services and	red by PETROSAFE in co is submitted only on th st not be disclosed to third j he contract.	e basis of strict
Report Number		E.QRA.Study.017/ <mark>Qaha-Egypt</mark> 2/UAN.156,393-PETROSAFE	.Gas/PRMS.No.003/2020/QRA/M Final.Report-Rev.01	G/MS/MY-DNV-
Report Status	Revision	01		
Tel Fac	ephone: + csimile: +(nail: <u>moha</u> <u>moha</u>	(202) 2517 6935 / 2517 (202) 2517 6938 / 2517 (202) 2517 6938 / 2517 (202) 2517 (202) 2517 (202) 2517 (202) 2517 (202) 2517 (202) 2517	5958 .com.eg om.eg / mohamed.yousry@j	petrosafe.com.eg
Team Work	Name Eng Mo	hamad Yousry	Signature	Date
	0	vention Specialist	PETROSAF	E /03/2020
	Safety A	Iohamad Samy ffairs Asst. Gen. Mgr.	PETROSAF	TE /03/2020
		hamad Al-Ghazaly nv. Affairs Gen. Mgr.	PETROSAF	TE /03/2020
Reviewed by		d Kelany sst. Gen. Mgr.	EGAS	/03/2020
		mad Farag ank Project Gen. Mgr.	EGAS	/03/2020
Approved by	Chem. Razek Asst. Ch Safety	Sameh Abd Al nairman for Health &	EGAS	/03/2020
	Eng. Ah	med Mahmoud airman for Planning & ects	EGAS	/03/2020
Distribution Client: EGAS				

File: EGAS / PETROSAFE •

PETROSAFE

Page 2 of 115

Date: March 2020

Document Title: Quantitative Risk Assessment "QRA" Study For Qaha Pressure Reduction & Metering Station

• Library: EGAS / PETROSAFE

CONTENTS

Executive Summary	08/115
Introduction	17/115
Technical Definitions	18/115
Objectives	23/115
Quantitative Risk Assessment Study Scope	24/115
Quantitative Risk Assessment "QRA" Studies	25/115
Method of Assessment	25/115
1.0- General Method Used	25/115
2.0- Risk Assessment	25/115
Modeling the Consequences	27/115
Criterion for Risk Tolerability	28/115
Personnel Vulnerability and Structural Damage	31/115
Quantification of the Frequency of Occurrence	34/115
Identification of Scenarios Leading to Selected Failures	34/115
Relevant Weather Data for the Study	35/115
- Weather Data	35/115
- Stability Categories	39/115
Qaha PRMS Description	40/115
Background	40/115
The PRMS & Off-Take Location Coordinates	40/115
PRMS Brief Description and Components	40/115
Qaha PRMS Units	41/115
Process Condition Data	48/115
Gas Odorant Specifications	49/115
Health Hazards	49/115
Inhalation	49/115

EGAS.HSE.QRA.Study.017/Qaha-Egypt.Gas.PRMS.No.003/2020/QRA/MG/MS/MY-DNV-PHAST.8.2/UAN.156,393-PETROSAFE-Final.Report-Rev.01

PETROSAFE

Page 3 of 115

Date: March 2020

Document Title: Quantitative Risk Assessment "QRA" Study For Qaha Pressure Reduction & Metering Station

Skin Contact	49/115
Eye Contact	49/115
Ingestion	49/115
Hygiene Standards and Limits	49/115
Fire and Explosion Hazards	49/115
Fire Fighting and Protection Systems and Facilities	50/115
Emergency Response Plan "ERP"	50/115
Analytical Results of Consequence Modeling	51/115
1.0- Pressure Reduction Station Inlet Pipeline (4 inch)	51/115
1/1- Consequence Modeling for 1 inch (Pin Hole) Gas Release	51/115
1/2- Consequence Modeling for 2 inch (Half Rup.) Gas Release	54/115
1/3- Consequence Modeling for 4 inch (Full Rup.) Gas Release	58/115
2.0- Pressure Reduction Station Outlet Pipeline (16 inch)	62/115
2/1- Consequence Modeling for 1 inch (Pin Hole) Gas Release	62/115
2/2- Consequence Modeling for 3 inch (Half Rup.) Gas Release	65/115
2/3- Consequence Modeling for 6 inch (Full Rup.) Gas Release	69/115
3.0- Pressure Reduction Station Odorant Tank (Spotleak)	74/115
4.0- Gas Heater (Water Bath Heating System)	80/115
5.0- Pressure Reduction Station Off-take Pipeline (4 inch)	86/115
5/1- Consequence Modeling for 1 inch (Pin Hole) Gas Release	86/115
5/2- Consequence Modeling for 2 inch (Half Rup.) Gas Release	89/115
5/3- Consequence Modeling for 4 inch (Full Rup.) Gas Release	92/115
Individual Risk Evaluation	95/115
Risk Calculation	95/115
• Event Tree Analysis	98/115
Summary of Modeling Results and Conclusion	110/115
Recommendations	116/115

EGAS.HSE.QRA.Study.017/Qaha-Egypt.Gas.PRMS.No.003/2020/QRA/MG/MS/MY-DNV-PHAST.8.2/UAN.156,393-PETROSAFE-Final.Report-Rev.01

PETROSAFE

Page 4 of 115

Date: March 2020

Tables		
Table (1)	Description of Modeling of the Different Scenario	27/115
Table (2)	Proposed Individual Risk (IR) Criteria (per person/year)	29/115
Table (3)	Criteria for Personnel Vulnerability & Structural Damage	31/115
Table (4)	Heat Radiation Effects on Structures (World Bank)	32/115
Table (5)	Heat Radiation Effects on People	32/115
Table (6)	Effects of Overpressure	33/115
Table (7)	Annual Average Temperature, Relative Humidity and Wind Speed / Direction	35/115
Table (8)	Mean of Monthly Air Temperature (°C)	36/115
Table (9)	Mean of Monthly Wind Speed (m/sec)	36/115
Table (10)	Mean of Monthly Average Relative Humidity	36/115
Table (11)	Pasqual Stability Categories	39/115
Table (12)	Relationship between Wind Speed and Stability	39/115
Table (13)	Sets of Weather Conditions Initially Selected for this Study	39/115
Table (14)	Qaha PRMS Units	41/115
Table (15)	Process Conditions / Gas Components & Specifications	48/115
Table (16)	Dispersion Modeling for Inlet – 1" / 4" Gas release	51/115
Table (17)	Dispersion Modeling for Inlet – 2" / 4" Gas release	54/115
Table (18)	Dispersion Modeling for Inlet – 4" Gas release	58/115
Table (19)	Dispersion Modeling for Outlet – 1" / 6" Gas release	62/115
Table (20)	Dispersion Modeling for Outlet – 3" / 6" Gas release	65/115
Table (21)	Dispersion Modeling for Outlet – 6" Gas release	69/115
Table (22)	Dispersion Modeling for Odorant Tank (Spotleak)	74/115
Table (23)	Dispersion Modeling for Heater Tank	80/115
Table (24)	Dispersion Modeling for Off-take – 1" / 4" Gas release	86/115
Table (25)	Dispersion Modeling for Off-take – 2" / 4" Gas release	89/115
Table (26)	Dispersion Modeling for Off-take – 4" Gas release	92/115
Table (27)	Failure Frequency for Each Scenario	97/115

PETROSAFE

Page 5 of 115

Date: March 2020

Document Title: Quantitative Risk Assessment "QRA" Study For Qaha Pressure Reduction & Metering Station

Table (28)	Inlet 4" / Outlet 6" / Off-Take 4" / Pipeline & Gas Heater Scenarios (Pin Hole Crack – 1" Release) – ETA	100/115
Table (29)	Inlet 4" / Outlet 6" / Off-Take 4" Pipeline Scenarios (Half Rupture Release) – ETA	101/115
Table (30)	Off-Take 4" / Inlet 4" / Outlet 6" Pipeline Scenarios (Full Rupture Release) – ETA	102/115
Table (31)	Odorant Tank Release – ETA	103/115
Table (32)	Total Frequencies for Each Scenario	104/115
Table (33)	Summarize the Risk on Workers / Public Exposure	104/115
Table (34)	Individual Risk (IR) Calculation for PRMS Workers	106/115
Table (35)	Individual Risk (IR) Calculation for the Public Near to the PRMS	106/115

Figures		
Figure (1)	Risk Assessment Framework	26/115
Figure (2)	Criteria for Individual Risk Tolerability	28/115
Figure (3)	Proposed Individual Risk Criteria	29/115
Figure (4)	Monthly Variations of the Maximum Temperature for Qaha Area	36/115
Figure (5)	Monthly Variations of the Wind Speed for Qaha Area	37/115
Figure (6)	Wind Rose for Qaha Area	37/115
Figure (7)	Monthly Variations of the Sunny, Cloudy and Precipitation days for Qaha Area	38/115
Figure (8)	Qaha Pressure Reduction and Metering Station "PRMS" General Layout (Egypt Gas Data)	43/115
Figure (9)	Qaha PRMS Piping and Instrumentation Diagram "P&ID" for Inlet & Filter Separator Section	44/112
Figure (10)	Qaha PRMS Piping and Instrumentation Diagram "P&ID" for Odorant System Section	45/112
Figure (11)	Qaha PRMS Piping and Instrumentation Diagram "P&ID" for Meter, Regulator and Outlet Section	46/112
Figure (12)	Qaha PRMS and Surroundings Plotted on Google Earth Photo	47/115

EGAS.HSE.QRA.Study.017/Qaha-Egypt.Gas.PRMS.No.003/2020/QRA/MG/MS/MY-DNV-PHAST.8.2/UAN.156,393-PETROSAFE-Final.Report-Rev.01

PETROSAFE

Page 6 of 115

Date: March 2020

Figure (13)	Gas Cloud Side View (UFL/LFL) (1" hole in 4" Inlet Pipeline)	52/115
Figure (14)	Heat Radiation Contours from Jet Fire (1" hole in 4" Inlet Pipeline)	53/115
Figure (15)	Gas Cloud Side View (UFL/LFL) (2" hole in 4" Inlet Pipeline)	55/115
Figure (16)	Heat Radiation Contours from Jet Fire (2" hole in 4" Inlet Pipeline)	56/115
Figure (17)	Early Explosion Overpressure Waves (2" hole in 4" Inlet Pipeline)	57/115
Figure (18)	Gas Cloud Side View (UFL/LFL) (4" Inlet Pipeline Full Rupture)	59/115
Figure (19)	Heat Radiation Contours from Jet Fire (4" Inlet Pipeline Full Rupture)	60/115
Figure (20)	Early Explosion Overpressure Waves (4" Inlet Pipeline Full Rupture)	61/115
Figure (21)	Gas Cloud Side View (UFL/LFL) (1" hole in 6" Outlet Pipeline)	63/115
Figure (22)	Heat Radiation Contours from Jet Fire (1" hole in 6" Outlet Pipeline)	64/115
Figure (23)	Gas Cloud Side View (UFL/LFL) (3" hole in 6" Outlet Pipeline)	66/115
Figure (24)	Heat Radiation Contours from Jet Fire (3" hole in 6" Outlet Pipeline)	67/115
Figure (25)	Early Explosion Overpressure Waves (3" hole in 6" Outlet Pipeline)	68/115
Figure (26)	Gas Cloud Side View (UFL/LFL) (6" Outlet Pipeline Full Rupture)	70/115
Figure (27)	Heat Radiation Contours from Jet Fire (6" Outlet Pipeline Full Rupture)	71/115
Figure (28)	Early Explosion Overpressure Waves (6" Outlet Pipeline Full Rupture)	72/115
Figure (29)	Heat Radiation Contours from Fireball (6" Outlet Pipeline Full Rupture)	73/115
Figure (30)	Vapor Cloud (UFL/LFL) Side View Graph (Odorant leak)	75/115

PETROSAFE

Page 7 of 115

Date: March 2020

Figure (31)	Heat Radiation Contours - Jet Fire Graph (Odorant Leak) 76/115		
Figure (32)	Heat Radiation Contours - Jet Fire on Site (Odorant Leak)		
Figure (33)	Late Explosion Overpressure Waves Graph (Odorant Leak)		
Figure (34)	Late Explosion Overpressure Waves on Site (Odorant Leak)	78/115	
Figure (35)	Vapor Cloud (UFL/LFL) Side View Graph (Gas Heater)	81/115	
Figure (36)	Heat Radiation Contours - Fire Graph (Gas Heater)	82/115	
Figure (37)	Heat Radiation Contours - Fire on Site (Gas Heater)	02/113	
Figure (38)			
Figure (39)	Early Explosion Overpressure Waves on Site (Gas Heater) 84/11		
Figure (40)	Gas Cloud Side View (UFL/LFL) (1" hole in 4" Off-take Pipeline)	87/115	
Figure (41)	Heat Radiation Contours from Jet Fire (1" hole in 4" Off- take Pipeline)	88/115	
Figure (42)	Gas Cloud Side View (UFL/LFL) (2" hole in 4" Off-take Pipeline)	90/115	
Figure (43)	Heat Radiation Contours from Jet Fire (2" hole in 4" off- take Pipeline)	91/115	
Figure (44)	Gas Cloud Side View (UFL/LFL) (4" off-take Pipeline Full Rupture)	93/115	
Figure (45)	Heat Radiation Contours from Jet Fire (4" off-take Pipeline Full Rupture)	94/115	
Figure (46)	Evaluation of Individual Risk	109/115	

Executive Summary

This report summarizes the Quantitative Risk Assessment (QRA) analysis study undertaken for the New Natural Gas Pressure Reduction & Metering Station "PRMS" with Odorant at Qaha City – Qalyoubeyia Governorate – Egypt. The PRMS owned by The Egyptian Natural Gas Holding Company "EGAS" and operated by Egypt Gas Company.

The scope of work includes performing frequency assessment, consequence modeling analysis and Quantitative Risk Assessment of Qaha PRMS in order to assess its impacts on the surroundings.

The main objective of the Quantitative Risk Assessment (QRA) study is to demonstrate that Individual Risk "IR" for workers and for public fall within the ALARP region of Risk Acceptance Criteria, and the new Qaha PRMS does not lead to any unacceptable risks to workers or the public.

QRA Study has been undertaken in accordance with the methodology outlined in the UKHSE as well as international regulations and standards.

QRA starts by Hazard Identification (HAZID) study, which determines the Major Accident Hazards (MAH) that requires consequence modelling, frequency analysis, and risk calculation.

In order to perform consequence-modelling analysis of the potential hazardous scenarios resulting from loss of containment, some assumptions and design basis have been proposed. Three scenarios of the release have been proposed:

- 1. Gas Release from the inlet / outlet pipeline.
- 2. Gas Release from the off-take point.
- 3. Leak from odorant tank.

The QRA has been performed using DNV Phast software (Ver. 8.2) for consequence modelling of different types of hazardous consequences.

Weather conditions have been selected based on wind speed and stability class for the area detailed weather statistics.

The worst case weather conditions has been selected represented by wind speed of 3.4 m/s and stability class "D" representing "Neutral" weather conditions, in order to obtain conservative results. The prevailing wind direction is North (N) & North North West (NNW).

As per results from modeling the consequences of each scenario, the following table summarize the study, and as follows:

PETROSAFE

Page 9 of 115

Date: March 2020

Event	Scenario	Effects
Pin hole (1") gas release 4	" inlet pipeline	
	Gas cloud UFL LFL 50 % LFL	The modeling shows that the gas cloud effects will be limited inside the PRMS boundary.
	Heat radiation / Jet fire 9.5 kW/m ² 12.5 kW/m ²	The modeling shows that the heat radiation values will extend down and crosswind outside the PRS boundary reaching the off-take point crosswind (1.6 & 4 kW/m ²), with no effects downwind (9.5, 12.5 & 25 kW/m ²)
	Early explosion 0.020 bar 0.137 bar 0.206 bar	N/D
	Late explosion 0.020 bar 0.137 bar 0.206 bar	N/D
Half Rupture (2") gas relea	se 4" inlet pipeline	
	Gas cloud UFL LFL 50 % LFL	The modeling shows that the gas cloud (LFL & 50 % LFL) will extend to reach the southern fence and extend about outside. The UFL will be limited inside the PRS boundary.
	Heat radiation / Jet fire 9.5 kW/m ² 12.5 kW/m ²	The modeling shows that the values of 9.5, 12.5, 25 & 37.5 kW/m ² will extend outside the PRS southern fence downwind with no effects. The values of 9.5 & 12.5 kW/m ² will reach the off-take point crosswind
	Early explosion 0.020 bar 0.137 bar 0.206 bar	The modeling shows that the value of 0.020, 0.137 & 0.206 bar will extend outside the PRMS south fence with no effects down or crosswind.
	Late explosion 0.020 bar 0.137 bar 0.206 bar	N/D

PETROSAFE

Page 10 of 115

Date: March 2020

Event	Scenario	Effects
Full Rupture gas release	e 4" inlet pipeline	
	Gas cloud UFL LFL 50 % LFL	The modeling shows that the gas cloud effects (LFL & 50 % LFL) will extend over south boundary with no effects outside downwind.
	Heat radiation / Jet fire 9.5 kW/m ² 12.5 kW/m ²	The modeling shows that the heat radiation values 9.5, 12.5, 25 & 37.5 kW/m^2 will extend outside the south fence with no effects downwind and reach the off-take point crosswind.
	Early explosion 0.020 bar 0.137 bar 0.206 bar	The values of 0.137 & 0.206 bar will be limited inside the PRS boundary effecting the PRS facilities and off-take point and no effects on site offices.
	Late explosion 0.020 bar 0.137 bar 0.206 bar	N/D
	Heat radiation / Fireball 9.5 kW/m ² 12.5 kW/m ²	N/D
Pin hole (1") gas release	6" outlet pipeline	
	Gas cloud UFL LFL 50 % LFL	The modeling shows that the gas cloud will be limited inside the PRS boundary.
	Heat radiation / Jet fire 9.5 kW/m ² 12.5 kW/m ²	The modeling shows that the heat radiation value 1.6, 4, 9.5 & 12.5 kW/m ² effects will be limited inside the PRS boundary with no effects. The values of 25 & 37.5 kW/m ² not determined by the software due to small leakage.
	Early explosion 0.020 bar 0.137 bar 0.206 bar	N/D
	Late explosion 0.020 bar 0.137 bar 0.206 bar	N/D

PETROSAFE

Page 11 of 115

Date: March 2020

Event	Scenario	Effects
Half Rupture (3") gas relea	se 6" outlet pipeline	
	Gas cloud UFL LFL 50 % LFL Heat radiation / Jet fire 9.5 kW/m ² 12.5 kW/m ²	The modeling shows that the gas cloud (LFL & 50% LFL) will be limited inside the PRS boundary reaching the off-take point downwind. The modeling shows that the heat radiation values of 9.5 & 12.5 kW/m ² will extend outside the PRS boundary south side with no effects downwind, and covering the off-take point crosswind. The values of 25 & 37.5 kW/m ² will be limited inside the boundary effecting the PRS facilities.
	Early explosion 0.020 bar 0.137 bar 0.206 bar	The modeling shows that the value of 0.020 bar will cover the PRS and extend outside the PRS boundary with no effects outside and covering the firefighting facilities and the heater. The values of 0.137 & 0.206 bar will be limited inside the PRS boundary effecting the PRS facilities and no effects on site offices.
	Late explosion 0.020 bar 0.137 bar 0.206 bar	N/D
Full Rupture gas release 6'	outlet pipeline	
	Gas cloud UFL LFL 50 % LFL	The modeling shows that the gas cloud effects will be limited inside the PRS boundary.
	Heat radiation / Jet fire 9.5 kW/m ² 12.5 kW/m ²	The modeling shows that the heat radiation values 9.5, 12.5, 25 & 37.5 kW/m^2 will extend outside the south fence with no effects downwind and cover the off-take point crosswind.
	Early explosion 0.020 bar 0.137 bar 0.206 bar	The modeling shows that the value of 0.020 bar will cover the PRS and extend outside the PRS boundary with no effects outside and covering the firefighting facilities and the heater. The values of 0.137 & 0.206 bar will be limited inside the PRS boundary effecting the PRS facilities and no effects on site offices.

PETROSAFE

Page 12 of 115

Date: March 2020

Event	Scenario	Effects
	Late explosion 0.020 bar 0.137 bar 0.206 bar Heat radiation / Fireball 9.5 kW/m ² 12.5 kW/m ²	<i>N/D</i> <i>The modeling shows that the heat radiation values of 1.6, 4, 9.5 & 12.5 kW/m² will limited inside the PRS boundary effecting the PRS facilities with some extension (1.6 kW/m²) down and</i>
		crosswind.
Odorant tank 1" leak	-	-
	Gas cloud UFL LFL 50 % LFL	The modeling shows that the vapor cloud will extend inside the PRS boundary reaching the off-take point downwind. Consideration should be taken when deal with liquid, vapors and smokes according to the MSDS for the material.
	Heat radiation / Jet fire 9.5 kW/m ² 12.5 kW/m ²	The modeling shows that all values of heat radiation 9.5, 12.5, 25 & 37.5 kW/m ² will be limited inside the PRS boundary down and crosswind.
	Early explosion 0.020 bar 0.137 bar 0.206 bar	N/D
	Late explosion 0.020 bar 0.137 bar 0.206 bar	The modeling shows that the value of 0.020 bar will cover the PRS facilities inside and extend outside from S/E/W sides with no effects. The values of 0.137 & 0.206 bar will extend outside the PRS boundary from south side with no effects down or crosswind.
Gas heater (water bath hea	ating system)	
	Gas cloud UFL LFL 50 % LFL	The modeling shows that the vapor cloud will extend inside the PRS boundary downwind reaching the PRS facilities.
	Heat radiation / Jet fire 9.5 kW/m ² 12.5 kW/m ²	The modeling shows that the heat radiation value 1.6, 4, 9.5 & 12.5 kW/m ² effects will be limited inside the PRS boundary with no effects. The values of 25 & 37.5 kW/m ² not determined by the software due to small leakage.

PETROSAFE

Page 13 of 115

Date: March 2020

Event	Scenario	Effects
	Early explosion 0.020 bar 0.137 bar 0.206 bar	The modeling shows that the value of 0.020 bar will extend outside the PRS from all sides covering the area surrounded with no effects outside. The value of 0.137 & 0.206 bar will be limited inside the PRS and near to the
	Late explosion 0.020 bar 0.137 bar 0.206 bar	control room. N/D
Pin hole (1") gas releas	e 4" off-take pipeline	
	Gas cloud UFL LFL 50 % LFL	The modeling shows that the gas cloud effects will be limited inside the PRS boundary.
	Heat radiation / Jet fire 9.5 kW/m ² 12.5 kW/m ²	The modeling shows that the heat radiation value of 1.6 & 4 kW/m^2 will be limited inside the PRS boundary with some extension outside from south side with no effects.
	Early explosion 0.020 bar 0.137 bar 0.206 bar	N/D
	Late explosion 0.020 bar 0.137 bar 0.206 bar	N/D
Half Rupture (2") gas	release 4" off-take pipelin	le
	Gas cloud UFL LFL 50 % LFL	The modeling shows that the gas cloud effects will be limited inside the PRS boundary.
	Heat radiation / Jet fire 9.5 kW/m ² 12.5 kW/m ²	The modeling shows that the heat radiation value of 1.6 & 4 kW/m ² will cover the PRS facilities and off-take point and extend outside the south and east fences down and crosswind with no effects.
	Early explosion 0.020 bar 0.137 bar 0.206 bar	N/D

PETROSAFE

Page 14 of 115

Date: March 2020

Document Title: Quantitative Risk Assessment "QRA" Study For Qaha Pressure Reduction & Metering Station

Event	Scenario	Effects
	Late explosion	N/D
	$0.020 \ bar$	11/2
	0.137 bar	
	0.206 bar	
Full Rupture gas release	4" off-take pipeline	
	Gas cloud	The modeling shows that the gas cloud
	UFL	will be limited inside the PRS boundary
	LFL	with some extension outside from south
	50 % LFL	side downwind.
	Heat radiation / Jet	The modeling shows that the heat
	fire	radiation values will extend outside the
	9.5 kW/m^2	PRS south fence downwind with no effects
	12.5 kW/m^2	on surrounding area.
	Early explosion	N/D
	0.020 bar	
	0.137 bar	
	0.206 bar	
	Late explosion	N/D
	0.020 bar	
	0.137 bar	
	0.206 bar	
	Heat radiation /	N/D
	Fireball	
	9.5 kW/m^2	
	12.5 kW/m^2	

The previous table shows that there is no direct effects on PRMS workers or surrounding public, so it will be assumed that one person (as public) works as farmer for 1 hour / day light.

The major hazards that extend over site boundary and/or effect on workers / public were used for Risk Calculations.

Event Tree Analysis (ETA) is an analysis technique for identifying and evaluating the sequence of events in a potential accident scenario following the occurrence of an initiating event. ETA utilizes a visual logic tree structure known as an event tree (ET). ETA provides a Probabilistic Risk Assessment (PRA) of the risk associated with each potential outcome. ETA has been used for scenario development.

The following data and assumptions have been considered in the Event tree analysis (ETA):

- Failure frequency data (mainly E&P Forum/OGP),
- Risk reduction factors (if available),
- Ignition probabilities (both immediate and delayed),
- Vulnerability data.

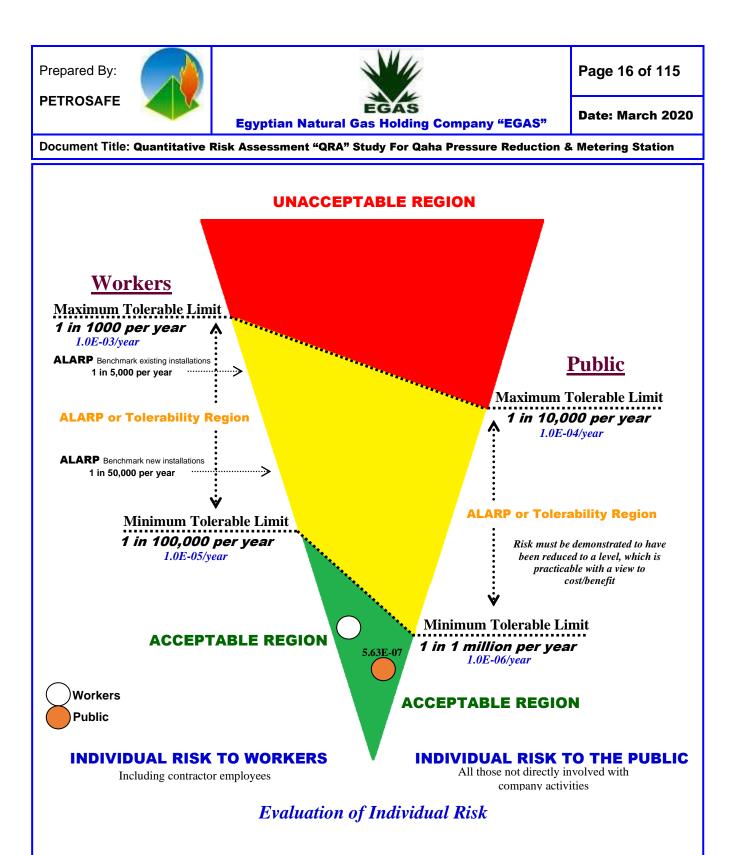
Risks have been assessed for workers / public using International Risk Management Guidelines as a reference.

The resulting risks have been compared with International Risk Acceptance Criteria.

Risk evaluation for Individual Risk "IR" for the major hazards presented in the following tables:

Individual Risk (IR) Calculation for PRMS Workers

Scenario	Event	People	Individual Risk "IR"	Acceptability Criteria
Gas heater (water bath heating system) 3" pipeline	Jet Fire	Indoor	8.82E-06	Acceptable ($$)
TOTAL Risk for Worker		8.82E-06	Acceptable ($$)	


Individual Risk (IR) Calculation for the Public Near to the PRMS

Scenario	Event	People	Individual Risk "IR"	Acceptability Criteria
Gas Release from 2"/4" inlet pipeline	Jet Fire	Outdoor	4.09E-07	Acceptable $()$
Gas Release from 4" off-take pipeline				
Gas Release from 4" inlet pipeline	Jet Fire	Outdoor	1.81E-08	Acceptable ($$)
Gas Release from 6" outlet pipeline				
Odorant tank 1" leak	Explosion	Outdoor	1.36E-07	Acceptable ($$)
ТС	TOTAL Risk for Worker			Acceptable ($$)

The previous table shows that there is some of direct effects on PRMS workers, and as there is no direct effects on public around the PRMS or the off-take point. Therefore it will be assumed that one person (as public) works as farmer for 1 hour / day light. (Refer to table 35).

Regarding to the results from risk calculations; the risk to PRMS <u>Workers and</u> <u>Public found in Acceptable Region</u>, so there are some points need to be considered to keep the risk tolerability and this will be describe in the following recommendations.

The following figure shows the Individual Risk "IR" for Qaha PRMS and Off-Take point:

The level of Individual Risk to the exposed workers at <u>Qaha</u> PRMS, based on the risk tolerability criterion used is <u>Acceptable</u>.

The level of Individual Risk to the exposed Public at <u>Qaha</u> PRMS area, based on the risk tolerability criterion used is <u>Acceptable</u>.

PETROSAFE

Page 17 of 115

Date: March 2020

Document Title: Quantitative Risk Assessment "QRA" Study For Qaha Pressure Reduction & Metering Station

Introduction

The Egyptian Natural Gas Holding Company "EGAS" has engaged Petroleum Safety and Environmental Services Company "PETROSAFE" to identify and evaluate hazards generated from the "New Natural Gas Pressure Reduction and Odorant Station – PRMS" at **Qaha** City – Qalyoubeyia Governorate – Egypt. The PRMS operated by Egypt Gas Company in order to advice protective measures for minimizing risk up to acceptable level.

As part of this review, a QRA study conducted for the following objectives:

- Identify hazardous scenarios related to the most critical unexpected event(s).
- Determine the likelihood of the identified scenarios;
- Model the potential consequences of the identified scenarios;
- Determine the Potential risk of fatality resulting from the identified hazardous scenarios.

The proposed study should also identify existing arrangements for the prevention of major accidents and their mitigation. This would involve emergency plan and procedure for dealing with such events.

PETROSAFE selected to carry out this study, as it has the experience in conducting this type of work.

PETROSAFE is also empowered by the Egyptian General Petroleum Corporation "EGPC" to identify and evaluate factors that relate to Occupational Health & Safety and Environmental Protection.

PETROSAFE

Page 18 of 115

Date: March 2020

	Technical Definitions
ALARP	Stands for "As Low As Reasonably Practicable", and is a term often used in the milieu of safety-critical and safety-involved systems. The ALARP principle is that the residual risk shall be as low as reasonably practicable.
API	American Petroleum Institute.
Confinement	A qualitative or quantitative measure of the enclosure or partial enclosure areas where vapors cloud may be contained.
Congestion	A qualitative or quantitative measure of the physical layout, spacing, and obstructions within a facility that promote development of a vapor cloud explosion.
DNV PHAST	Process Hazard Analysis Software Tool "PHAST" established by Det Norske Veritas "DNV". Phast examines the progress of a potential incident from the initial release to far-field dispersion including modelling of pool spreading and evaporation, and flammable and toxic effects.
E&P Forum	Exploration and Production "E&P" Forum is the international association of oil companies and petroleum industry organizations formed in 1974. It was established to represent its members' interests at the specialized agencies of the United Nations, governmental and other international bodies concerned with regulating the exploration and production of oil and gas.
EGAS	The Egyptian Natural Gas Holding Company.
EGPC	The Egyptian General Petroleum Corporation.
EX	Explosion Proof Type Equipment.
EERA	Escape, Evacuation and Rescue Assessment.
ESD	Emergency Shut Down.
Explosion	Explosion is the delayed ignition of gas in a confined or congested area resulting in high overpressure waves.
	Once the explosion occurs, it creates a blast wave that has a very steep pressure rise at the wave front and a blast wind that is a transient flow behind the blast wave. The impact of the blast wave

PETROSAFE

Date: March 2020

Document Title: Quantitative Risk Assessment "QRA" Study For Qaha Pressure Reduction & Metering Station

	on structure near the explosion known as blast loading. The two important aspects of the blast loading concern are the prediction of the magnitude of the blast and of the pressure loading onto the local structures. Pressure loading predication as result of a blast; resemble a pulse of trapezoidal or triangular shape. They normally have duration of between approximately 40 msec and 400 msec. The time to maximum pressure is typically 20 msec. Primary damage from an explosion may result from several
	events:
	1. Overpressure - the pressure developed between the expanding gas and its surrounding atmosphere.
	2. Pulse - the differential pressure across a plant as a pressure wave passes might cause collapse or movement, both positive and negative.
	3. Missiles and Shrapnel - are whole or partial items that are thrown by the blast of expanding gases that might cause damage or event escalation. In general, these "missiles" from atmospheric vapor cloud explosions cause minor impacts to process equipment since insufficient energy is available to lift heavy objects and cause major impacts. Small projectile objects are still a hazard to personnel and may cause injuries and fatalities. Impacts from rupture incidents may produce catastrophic results.
(ETA)	Is a forward, bottom up, logical modeling technique for both
Event Tree Analysis	success and failure that explores responses through a single initiating event and lays a path for assessing probabilities of the outcomes and overall system analysis. This analysis technique used to analyze the effects of functioning or failed systems, given that an event has occurred.
Failure Rate	Is the frequency with which an engineered system or component fails, expressed in failures per unit of time. It is highly used in reliability engineering.
GASCO	The Egyptian Natural Gas Company.
Gas Cloud Dispersion	Gas cloud air dilution naturally reduces the concentration to below the LEL or no longer considered ignitable (typically defined as 50 % of the LEL).

EGAS.HSE.QRA.Study.017/Qaha-Egypt.Gas.PRMS.No.003/2020/QRA/MG/MS/MY-DNV-PHAST.8.2/UAN.156,393-PETROSAFE-Final.Report-Rev.01

PETROSAFE

Page 20 of 115

Date: March 2020

HSE Policy	Health, Safety and Environmental Policy.
Hazard	An inherent physical or chemical characteristic (flammability, toxicity, corrosively, stored chemical or mechanical energy) or set of conditions that has the potential for causing harm to people, property, or the environment.
(HAZOP) Hazard And Operability Study	Is a structured and systematic examination of a planned or existing process or operation in order to identify and evaluate problems that may represent risks to personnel or equipment, or prevent efficient operation. The HAZOP technique is qualitative, and aims to stimulate the imagination of participants to identify potential hazards and operability problems; structure and completeness given by using guideword prompts.
(HAZID) Hazard Identification Study	Is a tool for hazard identification, used early in a project as soon as process flow diagrams, draft heat and mass balances, and plot layouts are available. Existing site infrastructure, weather, and Geotechnical data also required, these being a source of external hazards.
(HAC) Hazardous Area Classification	When electrical equipment is used in, around, or near an atmosphere that has flammable gases or vapors, flammable liquids, combustible dusts, ignitable fibers or flying's, there is always a possibility or risk that a fire or explosion might occur. Those areas where the possibility or risk of fire or explosion might occur due to an explosive atmosphere and/or mixture is often called a hazardous (or classified) location/area.
(IR) Individual Risk	The risk to a single person inside a particular building. Maximum individual risk is the risk to the most-exposed person and assumes that the person is exposed.
Jet Fire	A jet fire is a pressurized stream of combustible gas or atomized liquid (such as a high-pressure release from a gas pipe or wellhead blowout event) that is burning. If such a release is ignited soon after it occurs, (i.e., within 2 - 3 minutes), the result is an intense jet flame. This jet fire stabilizes to a point that is close to the source of release, until the release stopped. A jet fire is usually a very localized, but very destructive to anything close to it. This is partly because as well as producing thermal radiation, the jet fire causes considerable convective heating in the region

Prepared By: PETROSAFE			Page 21 of 115		
		EGAS Egyptian Natural Gas Holding Company "EGAS"	Date: March 2020		
Document Title: Quantitative Risk Assessment "QRA" Study For Qaha Pressure Reduction & Metering Station					
	entra	nd the tip of the flame. The high velocity of the ins air into the gas "jet" causing more efficient r than in pool fires.			
	objec ft) for a jet result of rel flares accou point flame heat j the fl	equentially, a much higher heat transfer rate t immersed in the flame, i.e., over 200 kW/m ² (r a jet fire than in a pool fire flame. Typically, the fire length is conservatively considered un-ign t of the exit velocity causing the flame to lift off lease. This effect has been measured on hydrod to at 20% of the jet length, but a value of 10 ant for the extra turbulence around the edges of as compared to the smooth gas release from a res have a relatively cool core near the source. flux usually occurs at impingement distances b lame length, from its source. The greatest he resarily on the directly impinged side.	62,500 Btdsq. he first 10% of hited gas, as a f the gas point carbon facility 0% is used to fa real release a flare tip. Jet The greatest eyond 40% of		
kW/m ²		vatt per square meter – unit for measuring the leat flux).	heat radiation		
LFL / LEL	Lower Flammable Limit / Lower Explosive Limit - The lowest concentration (percentage) of a gas or a vapor in air capable of producing a flash of fire in presence of an ignition source.				
MSDS	Mate	rial Safety Data Sheet.			
mm Hg	forme	illimeter of mercury is a manometeric unit erly defined as the extra pressure generated by ury one millimeter high.	• •		
MEL	Maxi	mum Exposure Limit.			
NFPA	Natio	nal Fire Protection Association.			
Ν	North	n Direction.			
NE	North	nern East Direction.			
NW	North	ern West Direction.			
N/D	Not L	Determined.			

PETROSAFE

Date: March 2020

	r
N/R	Not Reached.
OGP	Oil and Gas Producers.
ppm	Part Per Million.
PRMS	Pressure Reduction and Metering Station.
P&ID's	Piping and Instrumentation Diagrams.
PETROSAFE	Petroleum Safety and Environmental Services Company.
QRA	Quantitative Risk Assessment Study is a formal and systematic approach to estimating the likelihood and consequences of hazardous events, and expressing the results quantitatively as risk to people, the environment or your business.
Risk	Relates to the probability of exposure to a hazard, which could result in harm to personnel, the environment or public. Risk is a measure of potential for human injury or economic loss in terms of both the incident likelihood and the magnitude of the injury / loss.
Risk Assessment	The identification and analysis, either qualitative or quantitative, of the likelihood and outcome of specific events or scenarios with judgments of probability and consequences.
scm/hr	Standard Cubic Meter Per Hour.
SCBA	Self-Contained Breathing Apparatus.
SE	Southern East Direction.
SW	Southern West Direction.
TWA	Time Weighted Averages.
UFL/UEL	Upper flammable limit, the flammability limit describing the richest flammable mixture of a combustible gas.
UVCE	When a flammable vapor is released, its mixture with air will form a flammable vapor cloud. If ignited, the flame speed may accelerate to high velocities and produce significant blast overpressure.
V	Volume.
Vapor Cloud Explosion (VCE)	An explosion in air of a flammable material cloud.

PETROSAFE

Date: March 2020

Document Title: Quantitative Risk Assessment "QRA" Study For Qaha Pressure Reduction & Metering Station

Objectives

The objectives of this QRA for the unit facilities are:

- Identify hazardous scenarios related to the facilities based on historical data recorded;
- Determine the likelihood (frequencies) of the identified scenarios;
- Model the potential consequences of the identified scenarios;
- Determine the Potential risk of fatality resulting from the identified hazardous scenarios;
- Evaluate the risk against the acceptable risk level to ensure that it is within <u>As Low As Reasonably Practicable "ALARP"</u>, otherwise additional control measures and recommendations will be provided at this study to reduce the Risk, (ALARP).

Quantitative Risk Assessment Study Scope

The scope of work of this QRA study is limited to the following:

- Identification of the Most Critical Event_(s) or scenarios that may lead to fatal accidents as well as to ensure that the expected risk will not exceed the Acceptable Risk Level as per national and international standards;
- To assess and quantify the risks associated with Qaha PRMS and the off-take point on the neighboring / surrounding community;
- The study determines Frequencies, Consequences (Including Associated Effect Contours) and Potential Risk of Fatality for the identified hazardous scenarios;
- Normal operation of the facilities (e.g. Construction and specific maintenance activities) are excluded from this analysis.

Quantitative Risk Assessment "QRA" Studies

Method of Assessment

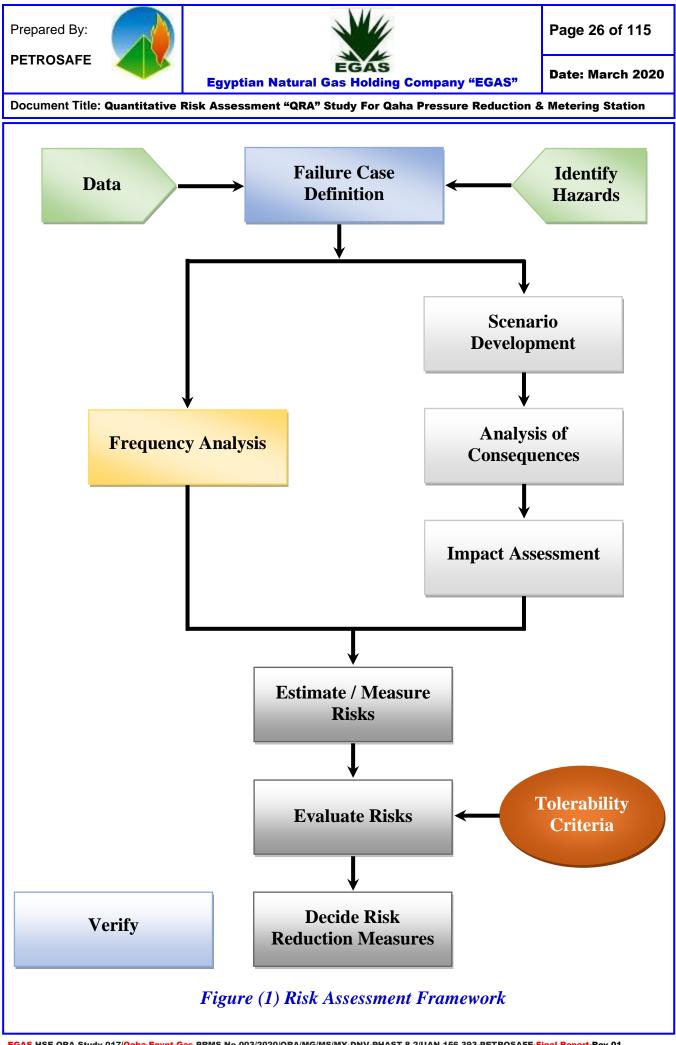
1.0- General Method Used

Attention mainly focussed on those accidents where a gross failure of containment could result in the generation of a large vapour cloud of flammable or toxic material. The approach adopted has involved the following stages:

- Identification of hazardous materials,
- Establishment of maximum total inventories and location.

During the site visit by the study team, the overall functioning of the site discussed in some detail and the Companies asked to provide a complete list of holdings of hazardous materials. A preliminary survey notes was issued by the team, as a private communication to the company concerned, and this formed the basis for subsequent more discussion and analysis.

From the PRMS design model provided by the client, it was impractical to examine in depth all possible failure modes for all parts within the time allowed for this study. Instead, only those potential failures, which might contribute, either directly or indirectly, to off-site risks were examined.


2.0- Risk Assessment

As the PRMS designed and prepared for construction, so it was therefore necessary for the study team to identify and analyse the hazards potential from first principles the routes by which a single or multiple accident could affect the community or neighbouring.

The terms of reference required the team to investigate and determine the overall risk to health and safety both from individual installations and then foreseeable interactions.

The assessment of risk in a complex situation is difficult. No method is perfect as all have advantages and limitations.

It was agreed that the quantitative approach was the most meaningful way of comparing and evaluating different risks. The risk assessment framework shown in Figure (1) used for the study.

Modeling the Consequences

Modeling of the consequences is one of the key steps in Quantitative Risk Assessment "QRA", as it provides the link between hazard identification (in this study Potential Loss of Containment Incidents) and the determination of possible impact of those incidents on People (Worker / Public), Asset and the Environment.

In this study, Natural Gas (Mainly Methane CH_4) was considered. There are several types of consequences to be considered for modelling, these include Gas Dispersion (UFL - LFL - 50 % LFL) / Heat Radiation / Explosion Overpressure modeling, also each of these scenarios described in the following table:

Table (1) Description of Modeling of the Different Scenario			
Discharge Modeling	Modeling of the mass release rate and its variation overtime.		
Radiation Modeling	Modeling of the Thermal radiation from fires.		
Dispersion Modeling	Modeling of the Gas and two-phase releases.		
Overpressure	Associated with explosions or pressure burst.		

 Table (1) Description of Modeling of the Different Scenario

Toxic hazards are considered as result of releases / loss of containment for which discharge modeling and gas dispersion modeling are required. The hazard ranges are dependent upon the condition of the release pressure and rate of release.

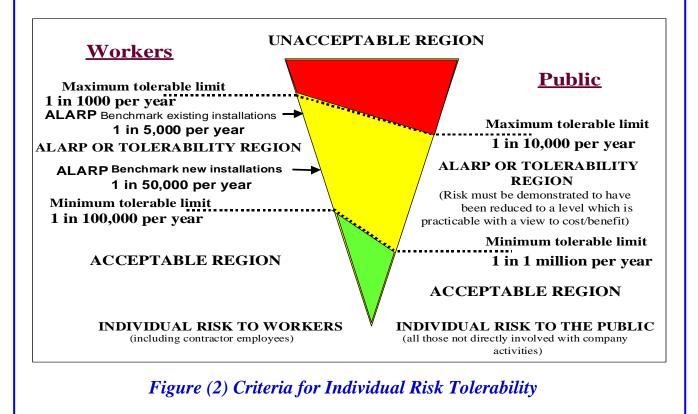
There are a number of commercial software for modeling gas dispersion, fire, explosion and toxic releases. PETROSAFE select the <u>DNV PHAST Ver. 8.2</u> <u>Software package</u> in modeling scenarios.

The software developed by DNV in order to provide a standard and validated set of consequence models that can be used to predict the effects of a release of hydrocarbon or chemical liquid or vapour. (Results of the modeling presented in pages from 51 to 94)

Criterion for Risk Tolerability

The main function of this phase of the work was to assess the effectiveness of the proposed arrangement for managing risks against performance standards.

In order to do this, we need firstly to define a performance standard and secondly, to be able to analyse the effectiveness of the arrangements in a manner which permits a direct comparison with these standards.


The defining of performance standards undertakes at the following three levels:

- Policy-based
- System
- Technical

Where the present work is mainly concerned with the assessment against the standards associated with the first two levels.

The policy-based performance standard relates to this objective to provide a working environment, where the risk to the individual reduced to a level that is ALARP.

This performance standard is therefore, expressed in the form of individual risk and the arrangements for managing this risk should result in a level of 'Individual Risk', based on a proposed Tolerability Criteria, Figure (2).

The criterion for IR tolerability for workers and to the public outlined in Table (2) and Figure (3).

It should be noted that this criteria proposed only as a guideline. Risk assessment is no substitute to professional judgement.

 Table (2) Proposed Individual Risk (IR) Criteria (per person/year)

Risk Level	Workers	Public
Intolerable	$> 10^{-3}$ per person/yr.	$> 10^{-4}$ per person/yr.
Negligible	$> 10^{-5}$ per person/yr.	$> 10^{-6}$ per person/yr.

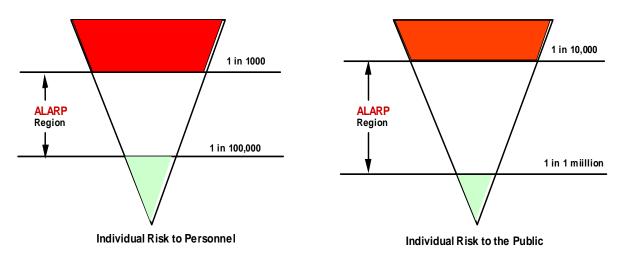


Figure (3) Proposed Individual Risk Criteria

Workers would include the Company employees and contractors. The public includes the public, visitors, and any third party who is not directly involved in the Company work activities.

On this basis, we have chosen to set our level of intolerability at Individual Risk for workers of 1 in 1,000 per year, and we define an individual risk of 1 in 100,000 per year as broadly acceptable. Consequently, our ALARP region is between 1 in 1,000 and 1 in 100,000 per person/year.

It is important to ensure that conflict between these subordinate standards and those stemming from international codes and standards are avoided and that any subordinate standards introduced are at least on a par with or augment those standards, which are associated with compliance with these international requirements. These system level performance standards are included as part of

the summaries from the QRA. These used as the basis for assessing the suitability and sufficiency of Egypt Gas Site arrangements for both protecting personnel on site and members of public from major hazards and securing effective response in an emergency. Failure to meet acceptance criteria at this level results in the identification of remedial measures for assessment both qualitatively and quantitatively.

The analytical work use a system analysis approach and divided into a number of distinct phases:

- Data collection, including results from site-based qualitative assessments.
- Definition of arrangements.
- Qualitative evaluation of arrangements against a catalogue of fire and explosion hazards from other major accident hazards.
- Preparing of event tree analysis models.
- Consolidation of list of design events.
- Analysis of the effect of design events on fire, explosion and toxic hazard management and emergency response arrangements.
- Quantification of that impact in terms of individual risk.

The main model would base on a systems approach, and it takes the following form:

- Estimates of incremental individual risk (IIR) per person/yr.
- Is caused-consequences based.
- Uses event tree analysis to calculate the frequency of occurrence.
- Estimates incremental individual risk utilizing event tree analysis, based on modeling the emergency response arrangements from detection through to recovery to a place of safety.

Personnel Vulnerability and Structural Damage

A criterion used in the QRA study for the calculation of personnel vulnerability and structural / asset damage because of fire, explosion and toxic release shown in Table (3).

The criteria shown below provide some assumptions for the impairment effects of hydrocarbon releases on personnel and structures, which based on Health and Safety Executive: Methods of approximation and determination of human vulnerability for offshore major accident hazard assessment.

Event Type	Threshold of Fatality		Asset/Structural Damage
Jet and Diffusive Fire Impingement	6.3 kW/ m ²	(1)	- Flame impingement 10 minutes.
I O'	12.5 kW/m ²	(2)	- 300 - 500 kW/m ²
		(2)	Structural Failure within 20 minutes.
Pool Fire Impingement	6.3 kW/ m ²	(1)	- Flame impingement 20 minutes
	12.5 kW/m ²	(2)	- 100 - 150 kW/m ²
		(-)	Structural Failure within 30 minutes.
Smoke	2.3% v/v	(3)	
	15% v/v	(4)	
Explosion Overpressure	300 mbar		100 mbar

Table (3) Criteria for Personnel Vulnerability and Structural Damage

(1) Fatality within 1 - 2 minutes

(2) Fatal < 1 minute

(3) Above 2.3%, escape possible but difficult

(4) No escape possible, fatal in a few seconds

The effects of exposure to fire expressed in terms of heat radiation (kW/m^2) and overpressure waves shown in Tables (4), (5) and (6).

PETROSAFE

Date: March 2020

Document Title: Quantitative Risk Assessment "QRA" Study For Qaha Pressure Reduction & Metering Station

Table (4) Heat Radiation Effects on Structures (World Bank)

Radiation Level kW/m ²	Observed Effect
37.5	Sufficient to cause damage to process equipment.
25	Minimum energy to ignite wood at indefinitely long exposure (non-piloted).
12.5	Minimum energy required to ignite wood, melting of plastic tubing.

Table (5) Heat Radiation Effects on People People

Radiation Level kW/m ²	Effects on People
1.2	Equivalent to heat from sun at midday summer.
1.6	Minimum level at which pain can be sensed.
4 - 6	Pain caused in 15 - 20 seconds, Second Degree burns after 30 seconds.
12	20 % chance of fatality for 60 seconds exposure.
25	100 % chance of fatality for continuous exposure.50 % chance of fatality for 30 seconds exposure.
40	30 % chance of fatality for 15 seconds exposure.
50	100 % chance of fatality for 20 seconds exposure.

PETROSAFE

Page 33 of 115

Date: March 2020

	Table (6) Effects of Overpressure		
Pressure			
bar	psig	Effects / Damage	
0.002	0.03	Occasional breakage of glass windows.	
0.006	0.1	Breakage of some small windows.	
0.021	0.3	Probability of serious damage beyond this point = 0.05. 10 % glass broken.	
0.027	0.4	Minor structural damage of buildings.	
0.068	1.0	Partial collapse of walls and roofs, possible injuries.	
0.137	2.0	Some severe injuries, death unlikely.	
0.206	3.0	Steel frame buildings distorted / pulled from foundation.	
0.275	4.0	Oil storage tanks ruptured.	
0.344	5.0	Wooden utilities poles snapped / Fatalities.	
0.41	6.0	Nearly complete destruction of building.	
0.48	7.0	Loaded wagon train overturned.	
0.689	10.0	Total destruction of buildings.	

Quantification of the Frequency of Occurrence

The probability of a sequence of events leading to a major hazard is dependent on the probability of each event in a sequence occurring; usually these probabilities may be multiplied together to obtain the end event probability or frequency.

The technique of Quantified Risk Assessment 'QRA' requires data in the form of probability or frequency to be estimated for each input event.

Ideally, data relating to hardware failures and human error that are specific to each plant should be obtained from the company's maintenance and historical records.

Unfortunately, records available were not in the form that allows data relevant to this study to be obtained. Therefore, other sources of data were used as a basis for failure/error scenarios. The sources of information and data are shown in the References section of this report.

Identification of Scenarios Leading to Selected Failures

For each selected failure scenario, the potential contributory factors were examined, taking into account any protective features available. Typically, the factors examined included:

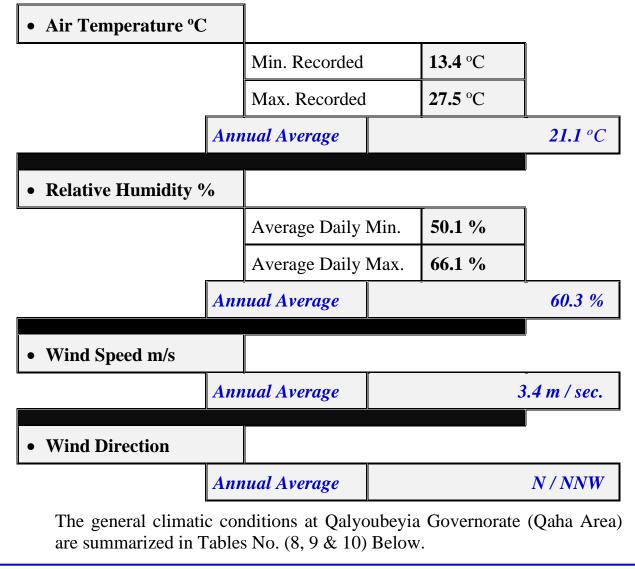
- Operator error
- Metallurgical fatigue or ageing of materials
- Internal or external Corrosion
- Loss of process control, e.g. pressure, temperature or flow, etc.
- Overfilling of vessels
- Introduction of impurities
- Fire and/or explosion
- Missiles
- Flooding

Account was taken at this stage of those limited releases, which, although in themselves did not constitute a significant off-site hazard could, under some circumstances, initiate a sequence leading to a larger release, as a knock-on effect.

It was noted that the proposed criterion for risk tolerability was used in Egypt by the following organizations: British Gas / British Petroleum / Shell / Total.

Relevant Weather Data for the Study

- Weather Data


The Weather Data relevant to this study consists of a list of weather conditions in the form of different combinations of wind-speed/direction, temperature, humidity and atmospheric stability. Table (7)

The weather conditions are an important input into the dispersion calculations and results for a single set of conditions could give a misleading picture of the hazard potential.

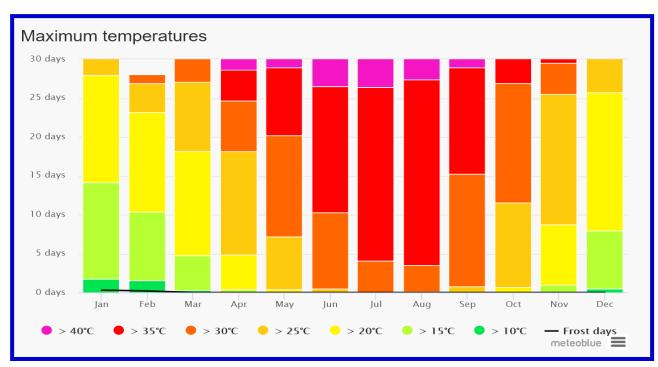
Met-oceanographic data gathered from Weather base for Qaha Area - Qalyoubeyia Governorate over a period of some years.

These data included wind speed, wind direction, air temperature and humidity, as well as current speed, direction and wave height.

Table (7) Annual Average Temperature, Relative Humidity and Wind Speed /Direction

Table (8) Mean of Monthly Air Temperature ($^{\bullet}C$) - Qaha Area

Months	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Temp. (c°)	13.4	14.5	16.7	20.6	23.9	26.7	27.5	27.3	25.9	23.4	18.9	14.9


Table (9) Mean of Monthly Wind Speed (m/sec) - Qaha Area Patha Area

Months	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Wind Speed (m/sec)	3.2	3.6	3.9	3.8	3.8	3.7	3.3	3.1	3.1	3.3	2.9	3.0

Table (10) Mean of Monthly Average Relative Humidity - Qaha Area

N N	1			-	0				~~~			
Months	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Relative Humidity (%)	65.2	61.4	58.7	52.5	50.1	52.7	61	64.5	62.9	62.2	66.1	65.7

Figure (4) shows the maximum temperature diagram for Qalyoubeyia Governorate (Qaha Area)

Figure (4) – Monthly Variations of the Maximum Temperature for Qaha Area

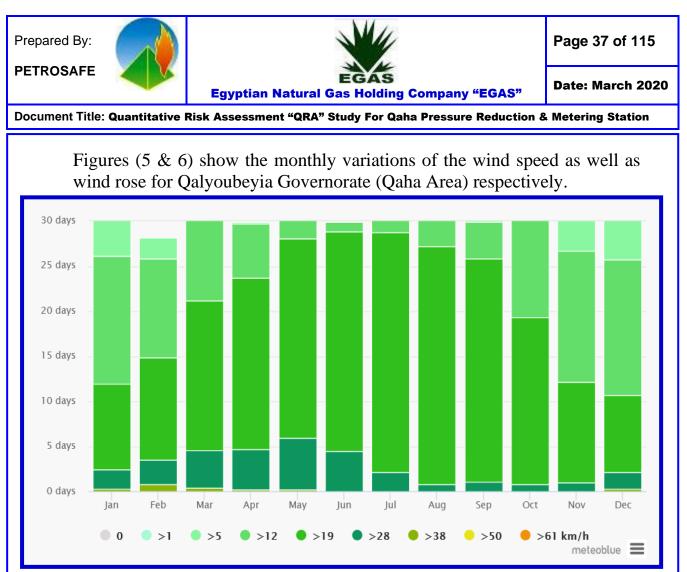
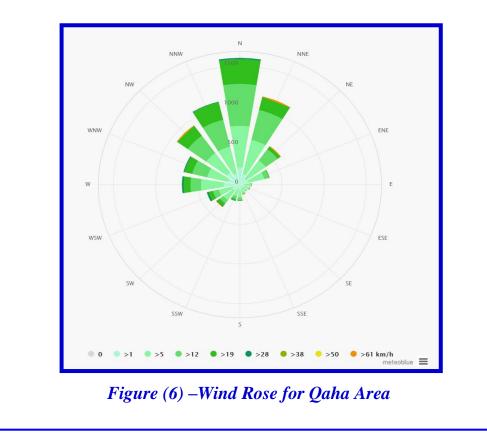



Figure (5) – Monthly Variations of the Wind Speed for Qaha Area

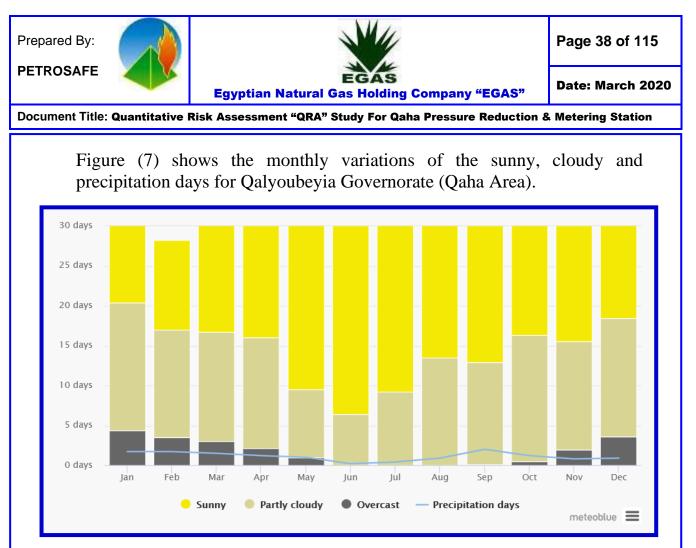


Figure (7) – Monthly Variations of the Sunny, Cloudy and Precipitation days for Qaha Area

- Stability Categories

The two most significant variables, which would affect the dispersion calculations, are Wind-speed and atmospheric stability. The stability class is a measure of the atmospheric turbulence caused by thermal gradients. Pasqual Stability identifies six main categories, which shown in the Tables (11 & 12) and summarized in Table (13).

Table (11) Pasqual Stability Categories

Α	В	С	D	E	F
Very	Unstable	Moderately	Neutral	Moderately	Stable
Unstable		Unstable		Stable	

Neutral conditions correspond to a vertical temperature gradient of about $1^{\rm o}\,C$ per 100 m.

Table (12) Relationship between Wind Speed and Stability

Wind speed	So	Day-time lar Radiatio)n		Night-time Cloud Cover	r
(m/s)	Strong	Medium Slight		Thin <3/8	Medium >3/8	Overcast >4/5
				<3/8	>3/0	>4/J
<2	А	A-B	В	-	-	D
2-3	A-B	В	С	Е	F	D
3-5	В	B-C	С	D	Е	D
5-6	С	C-D	D	D	D	D
>6	С	D	D	D	D	D

Table (13) Sets of Weather Conditions Initially Selected for this Study

Set for Wind Speed and Stability				
Wind speed	Stability			
3.4 m/sec.	D			

Qaha PRMS Description

Background

Qaha Pressure Reduction and Metering Station Operated by Egypt Gas Company. It is located about 3.5 km North direction from Qaha City downtown. The PRMS will provide the natural gas to Qaha and surrounding area public housing.

The PRMS feeding will be from the National Gas Pipeline owned by GASCO and the off-take point will be inside the PRS boundary. The off-take point pressure will be from 20 to 70 bar, and then the pressure reduced to 4/7 bar at the PRMS facilities with adding odorant, and then connected to the internal distribution network to public housing at Qaha and surrounding area.

The PRMS & Off-Take Point Location Coordinates (Egypt Gas Data)

	PR	MS	Off-take Point		
Point	North (N)	East (E)	North (N)	East (E)	
1	<i>30 ⁰ 17 ' 53.88 "</i>	<i>31 ⁰ 12 ' 43.13 "</i>	<i>30 ° 17 ' 52.20 "</i>	<i>31 ° 12 ' 42.19 "</i>	
2	<i>30 ° 17 ' 51.82 "</i>	<i>31 ⁰ 12 ' 42.53 "</i>	<i>30 ° 17 ' 52.02 "</i>	<i>31 ⁰ 12 ' 42.13 "</i>	
3	<i>30 ° 17 ' 52.25 "</i>	<i>31 ⁰ 12 ' 40.76 "</i>	<i>30 ° 17 ' 52.07 "</i>	<i>31 ⁰ 12 ' 41.91 "</i>	
4	<i>30 ⁰ 17 ' 54.35 "</i>	<i>31 ⁰ 12 ' 41.41 "</i>	<i>30 ° 17 ' 52.25 "</i>	<i>31 ⁰ 12 ' 41.95 "</i>	

PRMS Brief Description and Components (Egypt Gas Data)

The PRMS will be surround by 3 m height fence and mainly consist of the followings: (Ref. Figures 8, 9, 10 and 11)

- Inlet module: which contains 4" # 600 manual isolation valve.
- Filter module: two identical streams each contain inlet and outlet isolation valves.
- Heating system module: two identical.
- Metering module: two identical.
- Regulating module: two identical regulating lines.
- Outlet module: it contains manual outlet isolation valve.
- Odorant module: 600 lit. capacity bulk tank / 50 lit. daily use.
- Off-take point will be from under-ground room inside the PRS boundary containing connection pipes and isolation valves with GASCO underground pipeline 32", connected to 4" PRMS feeding pipeline.
- Security Office (one floor)
- Administration office (one floor)
- Firefighting Facilities (Fire Water Tank / Pumps / Fire water Network)

PETROSAFE

Date: March 2020

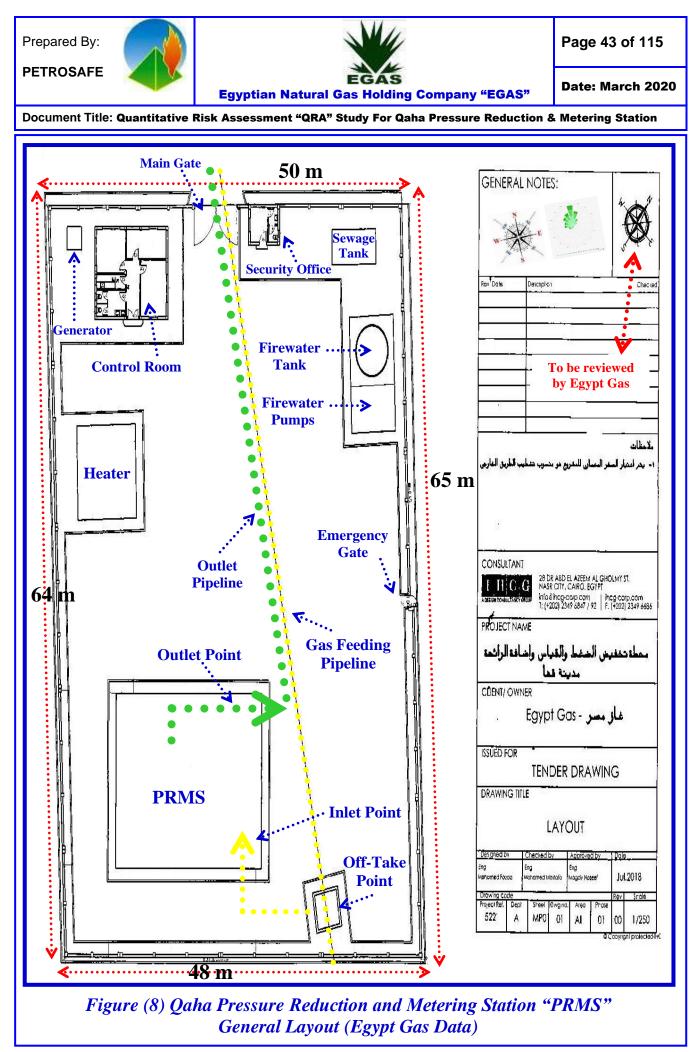
Document Title: Quantitative Risk Assessment "QRA" Study For Qaha Pressure Reduction & Metering Station

Qaha PRMS Units (Egypt Gas Data) - Need to be completed by Egypt Gas Table (14) Qaha PRMS Units

No	PRMS Units	Capacity	Size
1	Inlet unit		
	Inlet valve		
	Inlet valve bypass (ball + plug)		
2	Filter units		
	Line Fl		
	Line F2		
	Line F3 (valves only)		
	Line F3 (only blind flange)		
	Line F4 (only blind flange)		
3	Meter unit		
	Line Ml		
	Line M2		
	Line M3 (valves only)		
	Line M3 (only blind flange)		
	Line M4 (only blind flange)		
	One extension ball valve on outlet header (future heater)		
	One ball valve full bore for heater bypass		
4	Regulator unit		
	Line R1		
	Line R2		
	Line R3(valves only)		
	Line R3(only blind flange)		

Prepared By:

PETROSAFE



Page 42 of 115

Date: March 2020

Document Title: Quantitative Risk Assessment "QRA" Study For Qaha Pressure Reduction & Metering Station

	Line R4(only blind flange)	
	One extension ball valve on inlet header (future heater)	
5	Odorant unit	_
	Electrical pumps	
	Lapping system	
6	Outlet unit	
	Outlet valve	
	Extension valve (future)	
7	Monitoring and Control unit	
8	Generator (15 KVA)	
9	UPS	

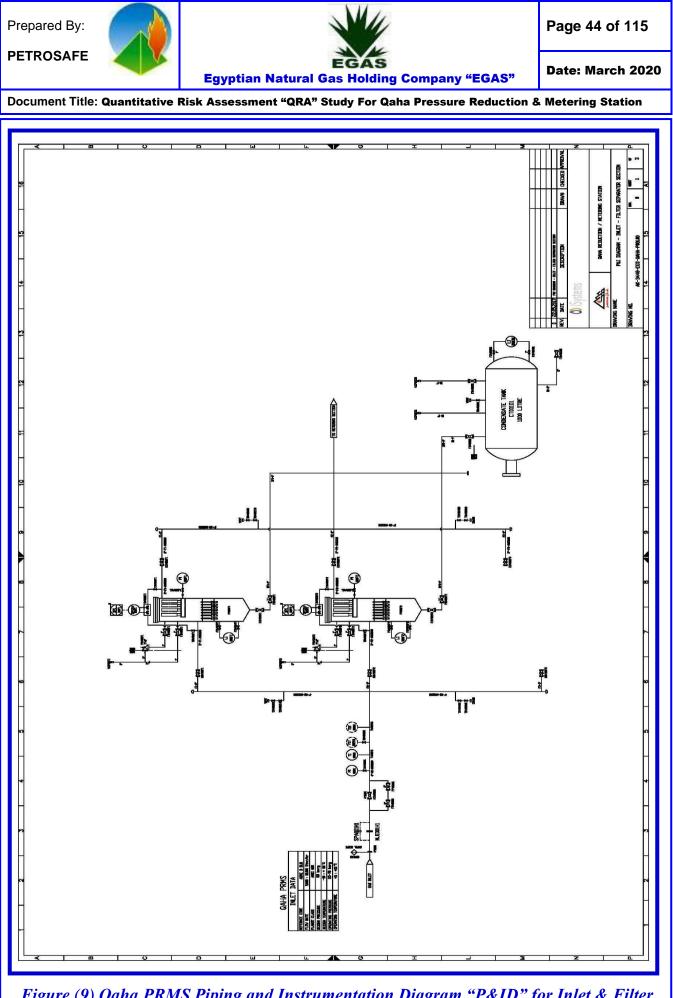
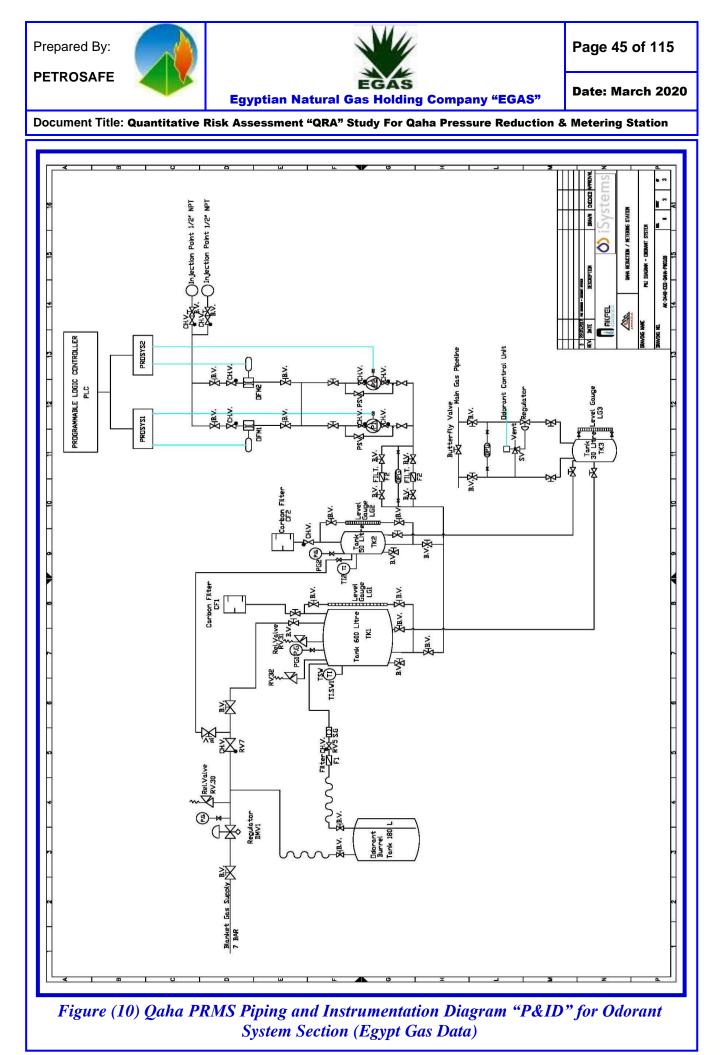
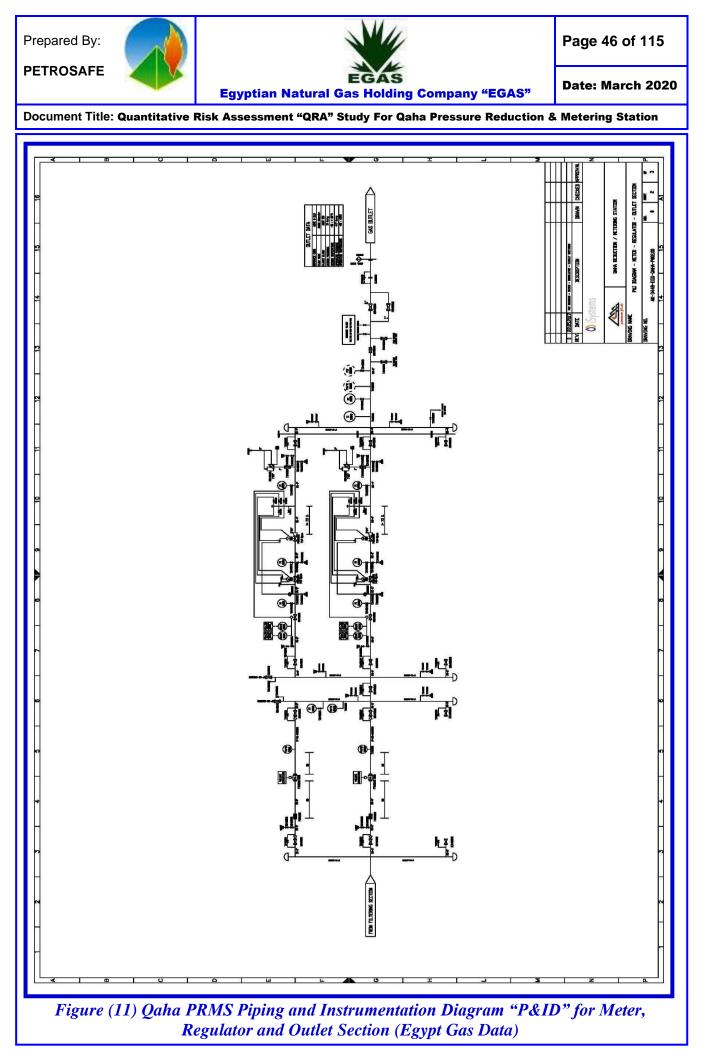




Figure (9) Qaha PRMS Piping and Instrumentation Diagram "P&ID" for Inlet & Filter Separator Section (Egypt Gas Data)

Prepared By:

PETROSAFE

Page 47 of 115

Date: March 2020

Document Title: Quantitative Risk Assessment "QRA" Study For Qaha Pressure Reduction & Metering Station

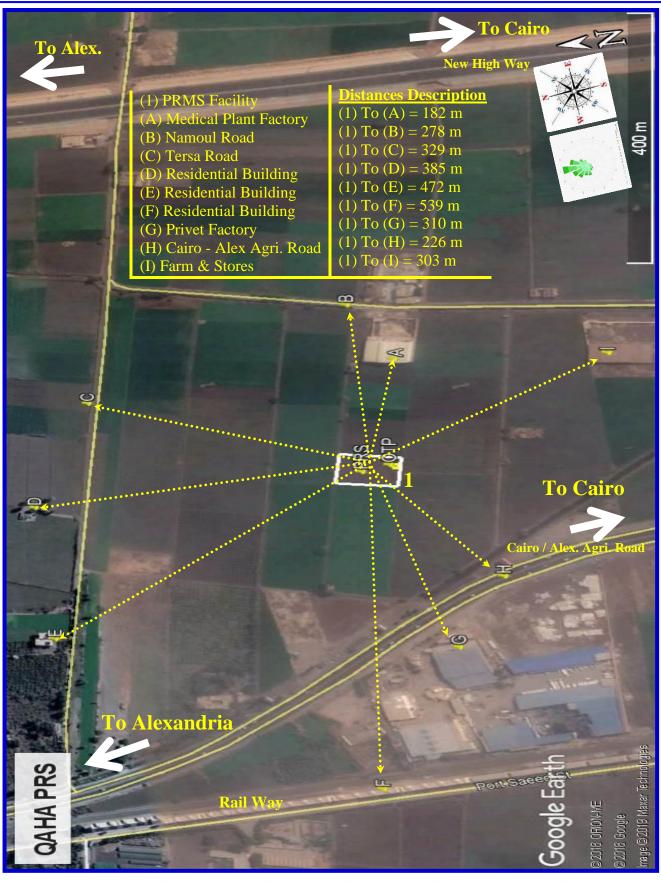


Figure (12) Qaha PRMS and Surroundings Plotted on Google Earth Photo

Process Condition Data (Egypt Gas Company Data)

The following table no (15) describes the process conditions for Qaha PRMS:

Table (15) Process Conditions / Gas Components & Specifications

Process Conditions	
Maximum flow rate scm / hr	10000
future flow rate scm / hr	40000
Design pressure bar g	70
Min / Max inlet pressure bar g	20 - 70
Min / Max outlet pressure bar g	7
Min / Max inlet temperature °C	15 – 25
Outlet temperature °C	Not less than 1
Gas Components	
Gas composition % Mol	
Water	0
H ₂ S	4 ppm
Nitrogen	0.2 - 0.83
Carbon Dioxide	0.07 - 3
Methane	77.73 - 99.82
Ethane	0.03 - 15.68
Propane	0.01 - 4.39
I-Butane	0.0 - 1.14
N-Butane	0.0 - 1.01
I-Pentane	0.0 - 0.19
N-Butane	0.0 - 0.26
C6+	0.0 - 0.25

Gas Specifications	
Specific gravity	0.5 - 0.69 (air = 1 k/m^3)

Gas Odorant Specifications

The odorant supplied with a Hazard Data Sheet and identified as Spotleak 1009. Spotleak is an aliphatic mixture in clear liquid form that is extremely flammable, with the following characteristics:

-	Boiling Range	60-70° C
-	Flash Point	-17.8°C
-	Freezing Point	-45.5° C
-	Density $(H_2O = 1)$	0.812 @ 15.5° C
-	Vapor Density	3.0 (air = 1)
-	Vapor Pressure (mm Hg)	6.6 @ 37.8°C

Health Hazards

Spotleak is not carcinogenic, but the major health hazards as a result of exposure to Spotleak include the following:

Inhalation

- Short-term exposure: Irritation and central nervous system effects
- Long-term exposure: Irritation

Skin Contact

- Short-term: Irritation
- Long-term: Dermatitis

Eye Contact

- Short-term: Irritation and tearing
- Long-term: Irritation

Ingestion

- Short-term: nausea, vomiting, central nervous system effects
- Long-term: no effects are known

Hygiene Standards and Limits

Occupational Exposure Limit for Spotleak to all components is 45 ppm, and the long-term "MEL" should be below 12 ppm (8 hrs. "TWA").

Fire and Explosion Hazards

Spotleak is a severe fire hazard. Vapor/air mixtures are explosive. Vapor is 3 times heavier than air. Vapor may ignite at distant ignition sources and flash back.

Thermal decomposition products include oxides of sulphur and hydrogen sulphide.

Fire Fighting and Protection Systems and Facilities

As per minutes of the coordination meeting dated 20/07/2016 with Civil Protection, the PRMS will provided by the following fire protection facilities:

- Firewater tank with a capacity of 40 cum.
- Firewater pumps (1 electrical & 1 diesel with capacity of 250 gpm each).
- Firewater main with a diameter of 4 inch.
- Firewater hydrants 1.5 inch X 1 / each.
- Firewater monitors.
- Smoke detector in all admin rooms & FM200 firefighting system for the control room.
- Heat detectors in buffet rooms.
- Smoke detectors in control rooms according to the area.
- Different sizes of fire extinguishers will be distributed at PRMS site.

Emergency Response Plan "ERP" - Need to be provided by Egypt Gas

The Emergency Response Plan "ERP" for Qaha PRS not provided by Egypt Gas, so it must be prepared (if not) to include all related items including all scenarios has been identified by this QRA study.

PETROSAFE

Page 51 of 115

Date: March 2020

Document Title: Quantitative Risk Assessment "QRA" Study For Qaha Pressure Reduction & Metering Station

Analytical Results of Consequence Modeling

1.0- Pressure Reduction Station Inlet Pipeline (4 inch)

1/1- Consequence Modeling for 1 inch (Pin Hole) Gas Release

The following table no. (16) Show that:

Table (16) Dispersion Modeling for Inlet - 1" / 4" Gas Release

	Gas Release (Inlet / PRV "High Pressure")										
Wind Cate	gory	Flammab	ility Limits]	Distance (m)		Н	Height (m)		Cloud Width (m)	
U		JFL		2.50			1.15	0	.30 @ 1.40 m		
3.4 D		L	FL		9			1.45	0	.90 @ 6.00 m	
		50 %	5 LFL		21.20			0-2	2.	00 @ 12.00 m	
			Je	et I	Fire						
Wind Category		Flame Length (m)	Heat Radiation (kW/m ²)		Distan Downw (m)			Distance Crosswind (m)		Lethality Level (%)	
<u></u>			1.6		23.50)		15.60		0	
		- 14.70	4		19.50			9.60		0	
3.4 D			9.5		16.60			5.30		0	
J.+ D			12.5		15.40)		4.10		20% /60 sec.	
			25		13.30			1.50		80.34	
			37.5		Not Read	ched	1	Not Reache	ed	98.74	
	Unc	onfined Va	por Cloud	Ex	plosion	- UV	/ C]	E (Open .	Air	;)	
Wind Category	Pres	sure Value (bar)	Over Press (n		e Radius		(Overpress Effect / 1			
			Early		Late					0	
		0.020	N/D		N/D	0.021 bar bar bar bar bar bar bar bar bar bar bar bar bar bar bar bar bar bar bar bar bar bar bar bar					
3.4 D		0.137	N/D		N/D	0.1. ba		Some seve unlikely	ere	injuries, death	
		0.206	N/D		N/D	0.20 ba		Steel frame pulled from		ldings distorted / ndation	

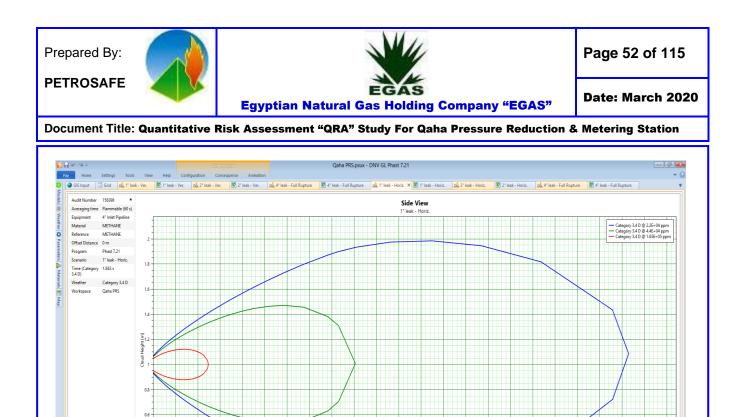


Figure (13) Gas Cloud Side View (UFL/LFL) (1" hole in 4" Inlet Pipeline)

2 📋 🖉 🎼

🗐 Output 🞲 Sea

- The previous figure shows that if there is a gas release from 1" hole size without ignition the flammable vapors will reach a distance more than 21 m downwind and from 0 - 2 m height.

. 12 ∽wind [m]

* 😼 🗊 😘 ENG

- The UFL will reach a distance of about 2.50 m downwind with a height of 1.15 m. The cloud large width will be 0.30 m crosswind at a distance of 1.40 m from the source.
- The LFL will reach a distance of about 9 m downwind with a height of 1.45 m. The cloud large width will be 0.90 m crosswind at a distance of 6 m from the source.
- The 50 % LFL will reach a distance of about 21.20 m downwind with a height from 0 to 2 m. The cloud large width will be 2 m crosswind at a distance of 12 m from the source.

The modeling shows that the gas cloud effects will be limited inside the PRMS boundary.

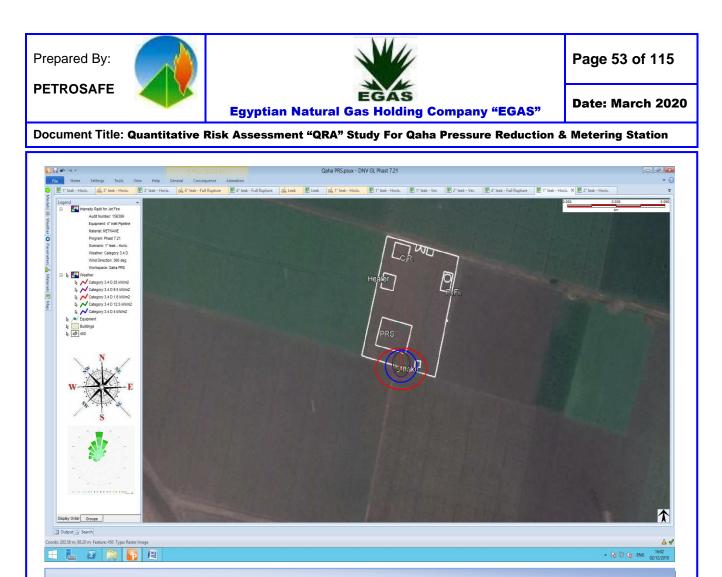


Figure (14) Heat Radiation Contours from Jet Fire (1" hole in 4" Inlet Pipeline)

- The previous figure show that if there is a gas release from 1" hole size and ignited the expected flame length is about 14.70 meters downwind.
- The 9.5 kW/m² heat radiation contours extend about 16.60 meters downwind 5.30 meters crosswind.
- The 12.5 kW/m² heat radiation contours extend about 15.40 meters downwind and 4.10 meters crosswind.
- The 25 kW/m^2 heat radiation contours extend about 13.30 meters downwind and 1.50 meters crosswind.
- The 37.5 kW/m² heat radiation not reached.

The modeling shows that the heat radiation values will extend down and crosswind outside the PRS boundary reaching the off-take point crosswind (1.6 & 4 kW/m^2), with no effects downwind (9.5, 12.5 & 25 kW/m²)

1/2- Consequence Modeling for 2 inch (Half Rup.) Gas Release

The following table no. (17) Show that:

 Table (17) Dispersion Modeling for Inlet - 2"/4" Gas Release

Gas Release (Inlet / PRV "High Pressure")							
gory	Flammab	ility Limits	Distance (m)	Height (m)	Cloud Width (m)	
U		FL	5.80		1	0.60 @ 2.80 m	
	L	FL	24.70		0-2.30	2.30 @ 17.00 m	
	50 %) LFL	24.80		0-3.10	3.10 @ 24.80 m	
		Je	et Fire				
		Heat Radiation (kW/m ²)	Downv	vind	Distance Crosswine (m)	•	
		1.6	52.7	0	36	0	
		4	43		22.50	0	
	21	9.5	36		13.30	0	
		12.5	34		10.70	20% /60 sec.	
		25	30		5	80.34	
		37.5	23		2.60	98.74	
Unc	o <mark>nfined</mark> Va	por Cloud	Explosion	- UV	CE (Open	Air)	
Pres					-	ure Waves	
	(bal)	Early	Late			Damage	
	0.020	64	N/D		0.021 bar Probability of serious damage beyond this point = 0.05 - 10 % glass broken		
	0.137	17	N/D			ere injuries, death	
	0.206	13	N/D		~	e buildings distorted / 1 foundation	
	Unce Press	gory Flammab U 50 %	Flammability LimitsUFLUFLII	Solution of the second secon	gory Flammability Limits Distance (m) I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I	goryFlammability LimitsDistance (m)Height (m)UFL5.801LFL24.700-2.3050 % LFL24.800-3.10Jet FireFlame Length (m)Heat Radiation (kW/m²)Distance Downwind (m)Distance Crosswind (m)Flame Length (m)Heat Radiation (kW/m²)Distance Downwind (m)Distance Crosswind (m)1.652.7036311.652.7036311.652.70363112.53410.702530537.5232.60Verpress Effect /Pressure Value (bar)Over Pressure Radius (m)Probability beyond thi glass broke0.02064N/D 0.021 barProbability beyond thi glass broke0.13717N/D 0.137 barSome sev unlikely	

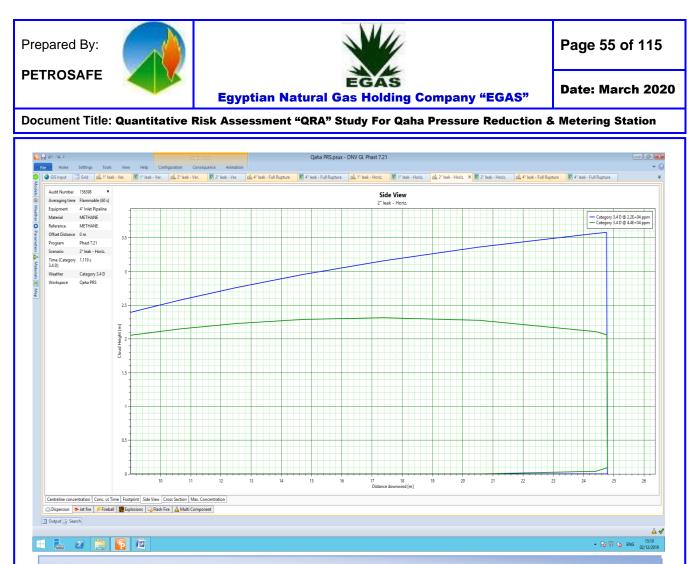


Figure (15) Gas Cloud Side View (UFL/LFL) (2" hole in 4" Inlet Pipeline)

- The previous figure shows that if there is a gas release from 2" hole size without ignition the flammable vapors will reach a distance about 24 m downwind and from 0 to 3.10 m height.
- The UFL will reach a distance of about 5.80 m downwind with a height of 1 m. The cloud large width will be 0.60 m crosswind at a distance of 2.80 m from the source.
- The LFL will reach a distance of about 24.70 m downwind with a height from 0 to 2.30 m. The cloud large width will be 2.30 m crosswind at a distance of 17 m from the source.
- The 50 % LFL will reach a distance of about 24.80 m downwind with a height from 0 to 3.10 m. The cloud large width will be 3.10 m crosswind at a distance of 24.80 m from the source.

The modeling shows that the gas cloud (LFL & 50 % LFL) will extend to reach the southern fence and extend about outside. The UFL will be limited inside the PRS boundary.

- The previous figure shows that if there is a gas release from 2" hole size and ignited the expected flame length is about 31 meters downwind.
- The 9.5 kW/m² heat radiation contours extend about 36 meters downwind and 13.30 meters crosswind.
- The 12.5 kW/m² heat radiation contours extend about 34 meters downwind and 10.70 meters crosswind.
- The 25 kW/m² heat radiation contours extend about 30 meters downwind and 5 meters crosswind.
- The 37.5 kW/m² heat radiation contours extend about 23 meters downwind and 2.60 meters crosswind.

The modeling shows that the values of 9.5, 12.5, 25 & 37.5 kW/m² will extend outside the PRS southern fence downwind with no effects. The values of 9.5 & 12.5 kW/m² will reach the off-take point crosswind

Figure (17) Early Explosion Overpressure Waves (2" hole in 4" Inlet Pipeline)

🔄 Output 🖓 Search

3 🚺 🖉

- The previous figure shows that if there is a gas release from 2" hole size and late ignited this will give an explosion with different values of overpressure waves.

Goog

• 😼 🕅 😘 ENG

- The 0.020 bar overpressure waves will extend about 64 meters downwind.
- The 0.137 bar overpressure waves will extend about 17 meters downwind.
- The 0.206 bar overpressure waves will extend about 13 meters downwind.

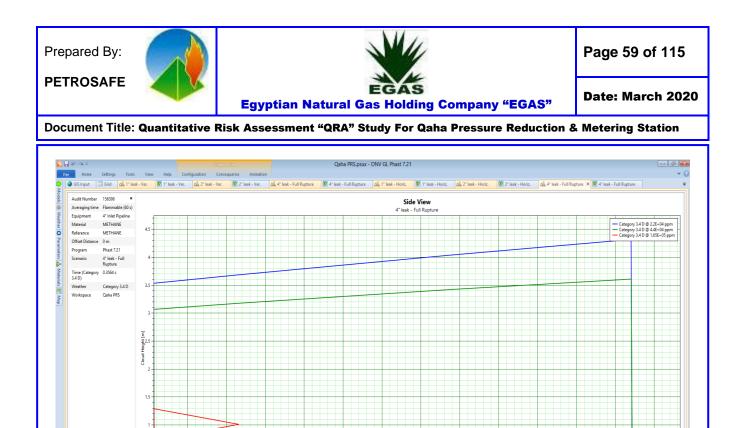
The modeling shows that the value of 0.020, 0.137 & 0.206 bar will extend outside the PRMS south fence with no effects down or crosswind.

1/3- Consequence Modeling for 4 inch (Full Rupture) Gas Release

The following table no. (18) Show that:

Table (18) Dispersion Modeling for Inlet - 4" Gas Release

Gas Release							
Wind Category	Flammability Limits	Distance (m)	Height (m)	Cloud Width (m)			
	UFL	14.66	1.30	0.60 @ 13.60 m			
3.4 D	LFL	19.60	0 - 3.60	3.60 @ 19.60 m			
	50 % LFL	19.70	0 - 4.40	4.40 @ 19.70 m			


Jet Fire

	Jov The								
Wind Category	Flame Length (m)	Heat Radiation (kW/m ²)	Distance Downwind (m)	Distance Crosswind (m)	Lethality Level (%)				
	1.6	120	73	0					
	58.27	4	84	46	0				
3.4 D		9.5	68	27.80	0				
5.4 D		12.5	63	22.70	20 %/60 sec.				
		25	55	12	80.34				
		37.5	45	8	98.74				

Unconfined Vapor Cloud Explosion - UVCE (Open Air)

Wind	Wind ategory (bar) Pressure Value (m) Late		Overpressure Waves Effect / Damage		
Category			Late	Effect / Damage	
	0.020	64	N/D	0.021 bar	Probability of serious damage beyond this point = 0.05 - 10 % glass broken
3.4 D	0.137	17	N/D	0.137 bar	Some severe injuries, death unlikely
	0.206	13	N/D	0.206 bar	Steel frame buildings distorted / pulled from foundation

		Fireball	
Wind Category	Heat Radiation (kW/m ²)	Distance (m)	Heat Radiation (kW/m ²) Effects on People & Structures
	1.6	Not Determined	<u>12.5</u> 20 % Chance of fatality for 60 sec exposure
	4	Not Determined	<i>exposure</i> <u>25</u>
3.4 D	9.5	Not Determined	100 % Chance of fatality for
3.4 D	12.5	Not Determined	continuous exposure 50 % Chance of fatality for 30 sec
	25	Not Determined	exposure <u>37.5</u>
	37.5	Not Determined	Sufficient of cause process equipment damage

- The previous figure shows that if there is a gas release from 4" pipeline full rupture without ignition, the flammable vapors will reach a distance more than 19 m downwind and over 4 m height.

Figure (18) Gas Cloud Side View (UFL/LFL) (4" Inlet Pipeline Full Rupture)

concentration Conc. vs Time | Footprint Side View | Cross Section | Max. Co on | 🍉 Jet Fire | 🎤 Fireball | 👹 Explosions | 🍕 Flash Fire | 🛓 Multi Compor

🛓 🛛 🍔 脣 🖉

17 ~nwind [m]

* 😼 😨 😘 ENG

- The UFL will reach a distance of about 14.66 downwind with a height of 1.30 m. The cloud large width will be 0.60 m crosswind at a distance of 13.60 m from the source.
- The LFL will reach a distance of about 19.60 m downwind with a height from 0 to 3.60 m. The cloud large width will be 3.60 m crosswind at a distance of 19.60 m from the source.
- The 50 % LFL will reach a distance of about 19.70 m downwind with a height from 0 to 4.40 m. The large width will be 4.40 m crosswind at a distance of 19.70 m from the source.

The modeling shows that the gas cloud effects (LFL & 50 % LFL) will extend over south boundary with no effects outside downwind.

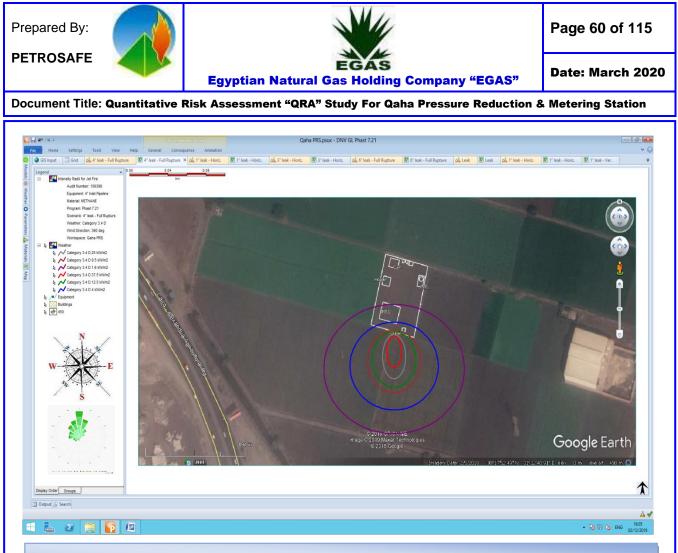


Figure (19) Heat Radiation Contours from Jet Fire (4" Inlet Pipeline Full Rupture)

- The previous figure show that if there is a gas release from 4" pipeline full rupture and ignited the expected flame length is about 58 meters downwind.
- The 9.5 kW/m² heat radiation contours extend about 68 meters downwind and 27.80 meters crosswind.
- The 12.5 kW/m² heat radiation contours extend about 63 meters downwind and 22.70 meters crosswind.
- The 25 kW/m^2 heat radiation contours extend about 55 meters downwind and 12 meters crosswind.
- The 37.5 kW/m² heat radiation contours extend about 45 meters downwind and 8 meters *crosswind*.

The modeling shows that the heat radiation values 9.5, 12.5, 25 & 37.5 kW/m^2 will extend outside the south fence with no effects downwind and reach the off-take point crosswind.

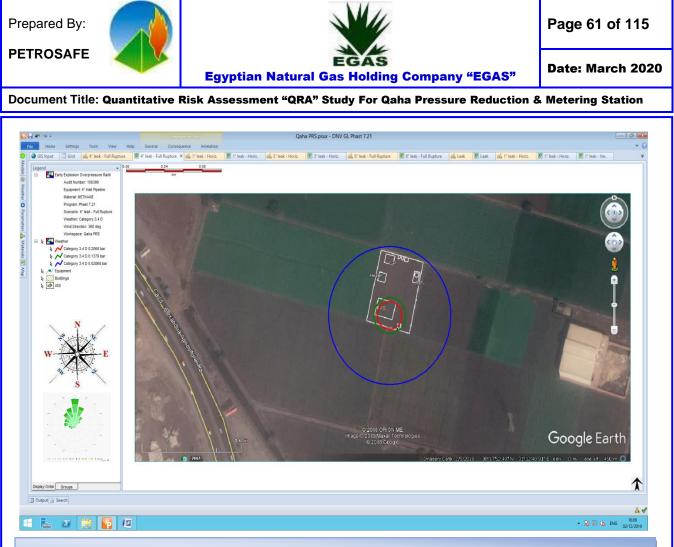
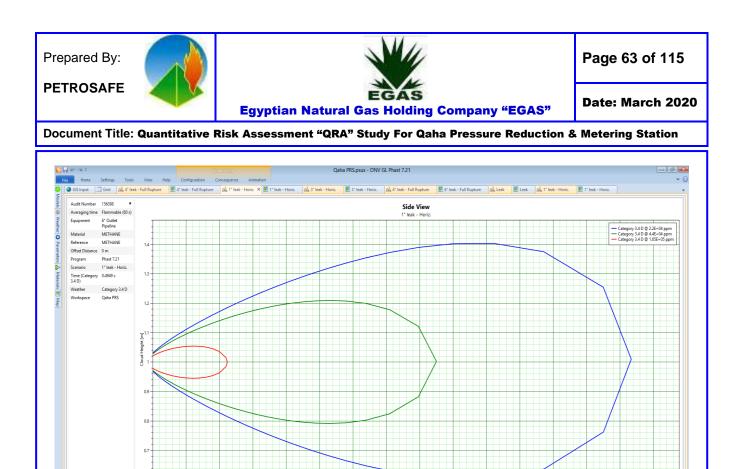


Figure (20) Early Explosion Overpressure Waves (4" Inlet Pipeline Full Rupture)

- The previous figure shows that if there is gas release from 4" pipeline full rupture and late ignited this will give an explosion with different values of overpressure waves.
- The 0.020 bar overpressure waves will extend about 64 meters radius.
- The 0.137 bar overpressure waves will extend about 17 meters radius.
- The 0.206 bar overpressure waves will extend about 13 meters radius.

The modeling shows that the value of 0.020 bar will cover the PRS and extend outside the PRS boundary with no effects.

The values of 0.137 & 0.206 bar will be limited inside the PRS boundary effecting the PRS facilities and off-take point and no effects on site offices.


2.0- Pressure Reduction Station Outlet Pipeline (6 inch)

2/1- Consequence Modeling for 1 inch (Pin Hole) Gas Release

The following table no. (19) Show that:

 Table (19) Dispersion Modeling for Outlet - 1" / 6" Gas Release
 Comparison

Gas Release (Outlet / PRV "Low Pressure")										
Wind Categ	gory	Flammab	ility Limits	Distance (m)		ı)	Height (m)		Cloud Width (m)	
	U		FL	1	1.20			1.06	0	.12 @ 0.60 m
3.4 D		L	FL	4	.35			1.20	0	.40 @ 2.70 m
[50 %	LFL	7	.20		0	- 1.40	1	.40 @ 4.50 m
			Je	et Fire	;					
Wind Category		Flame Length (m)	Heat Radiation (kW/m ²)		Distan ownw (m)			Distance Crosswind (m)		Lethality Level (%)
L			1.6		10			5.70		0
		4			8.50			3.20		0
3.4 D		7.15	9.5		7			1.20		0
3.4 D			12.5		6			0.50		20% /60 sec.
			25	No	Not Reached		١	Not Reache	ed	80.34
			37.5	No	ot Read	ched	N	Not Reache	ed	98.74
	Unc	o <mark>nfined</mark> Va	por Cloud	Explo	sion	- UV	CI	E (Open	Air	·)
Wind Category	Pres	sure Value	Over Press (n		dius		(Dverpress		
Category		(bar)	Early	La	te			Effect /]	Dai	nage
		0.020	N/D	N/.	D	0.021 bar Probability of serious data beyond this point = 0.05 - glass broken				
3.4 D		0.137	N/D	N/	D	0.13 bar		Some sev unlikely	ere	injuries, death
		0.206	N/D	N/.	D	0.20 bar		Steel frame pulled from		ldings distorted / ndation

- The previous figure show that if there is a gas release from 1" hole size without ignition the flammable vapors will reach a distance more than 7 m downwind and over 1 m height.

Figure (21) Gas Cloud Side View (UFL/LFL) (1" hole in 6" Outlet Pipeline)

- 😼 🔁 💪 ENG

Cutnut 😨 Search

= 🛓 🛛 🎒 🛐 🚇

- The UFL will reach a distance of about 1.20 m downwind with a height of 1.06 m. The cloud large width will be 0.12 m crosswind at a distance of 0.60 m from the source.
- The LFL will reach a distance of about 4.35 m downwind with a height of 1.20 m. The cloud large width will be 0.40 m crosswind at a distance of 2.70 m from the source.
- The 50 % LFL will reach a distance of about 7.20 m downwind with a height of from 0 to 1.40 m. The cloud large width will be 1.40 m crosswind at a distance of 4.50 m from the source.

The modeling shows that the gas cloud will be limited inside the PRS boundary.

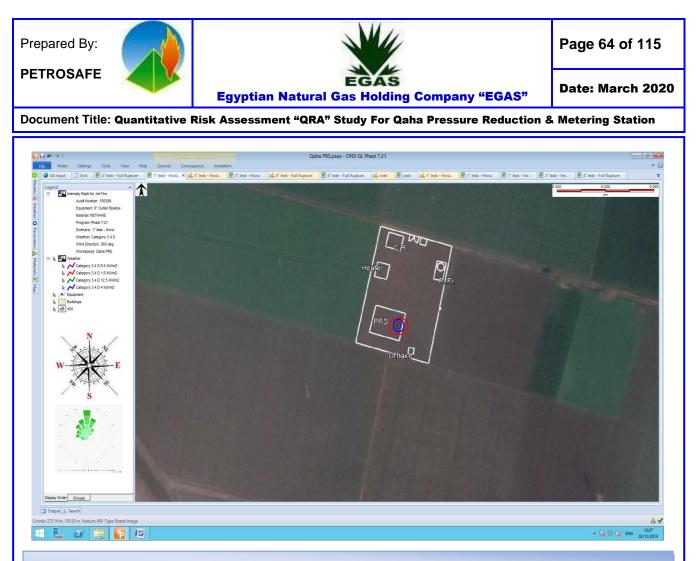


Figure (22) Heat Radiation Contours from Jet Fire (1" hole in 6" Outlet Pipeline)

- The previous figure shows that if there is a gas release from 1" hole size and ignited the expected flame length is about 7.15 meters downwind.
- The 1.6 kW/m^2 heat radiation contours extend about 10 meters downwind and 5.70 meters crosswind.
- The 4 kW/m^2 heat radiation contours extend about 8.50 meters downwind and 3.20 meters crosswind.
- The 9.5 kW/m² heat radiation contours extend about 7 meters downwind and 1.20 meters crosswind.
- The 12.5 kW/m^2 heat radiation contours extend about 6 meters downwind and 0.50 meters crosswind.
- The 25 kW/m² heat radiation not reached.
- The 37.5 kW/m^2 heat radiation not reached.

The modeling shows that the heat radiation value 1.6, 4, 9.5 & 12.5 kW/m^2 effects will be limited inside the PRS boundary with no effects.

The values of 25 & 37.5 kW/m² not determined by the software due to small leakage.

PETROSAFE

Egyptian Natural Gas Holding Company "EGAS"

Page 65 of 115

Date: March 2020

Document Title: Quantitative Risk Assessment "QRA" Study For Qaha Pressure Reduction & Metering Station

2/2- Consequence Modeling for 3 inch (Half Rup.) Gas Release

The following table no. (20) Show that:

Table (20) Dispersion Modeling for Outlet - 3" / 6" Gas Release

Gas Release										
Wind Categ	gory	Flammabi	ility Limits	Distance	Distance (m)		Height (m)		Cloud Width (m)	
	U		FL	4.20	4.20		1		.60 @ 2.90 m	
3.4 D		Ll	FL	17.40)	0	- 1.90	1.	80 @ 11.50 m	
		50 %	LFL	17.50)	0	- 2.80	2.	80 @ 17.50 m	
			Je	et Fire						
Wind Category		Flame Length (m)	Heat Radiation (kW/m ²)	Down	ance 1wind n)		Distance Crosswine (m)		Lethality Level (%)	
			1.6		8		26.40		0	
		ľ	4	29	29.40		16.50		0	
240		23.80	9.5	2	23		9.50		0	
3.4 D			12.5	2	21		7.60		20% /60 sec.	
			25	1	17		3.40		80.34	
			37.5	9.	60		1.40		98.74	
	Unc	o <mark>nfined</mark> Va	por Cloud	Explosio	n - U	VC	E (Open	Air	;)	
Wind Category	Pres	sure Value	Over Press (n		s	(-	sure Waves		
Category		(bar)	Early	Late			Effect / 1	Dar	nage	
		0.020	40	N/D		021)ar		s poi	serious damage int = 0.05 - 10 %	
3.4 D		0.137	11	N/D		137 0ar	Some sev unlikely	ere	injuries, death	
		0.206	8	N/D		206 0ar	Steel frame pulled from		ldings distorted / ndation	

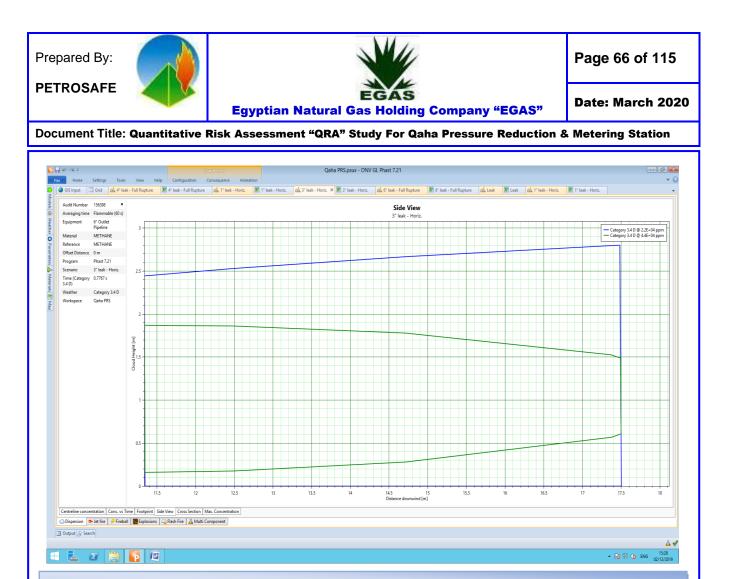


Figure (23) Gas Cloud Side View (UFL/LFL) (3" hole in 6" Outlet Pipeline)

- The previous figure shows that if there is a gas release from 3" hole size without ignition the flammable vapors will reach a distance more than 17 m downwind and 2.80 m height.
- The UFL will reach a distance of about 4.20 m downwind with a height of 1 m. The cloud large width will be 0.60 m crosswind at a distance of 2.90 m from the source.
- The LFL will reach a distance of about 17.40 m downwind with a height from 0 to 1.90 m. The cloud large width will be 1.80 m crosswind at a distance of 11.50 m from the source.
- The 50 % LFL will reach a distance of about 17.50 m downwind with a height from 0 to 2.80 m. The cloud large width will be 2.80 m crosswind at a distance of 17.50 m from the source.

The modeling shows that the gas cloud (LFL & 50% LFL) will be limited inside the PRS boundary reaching the off-take point downwind.

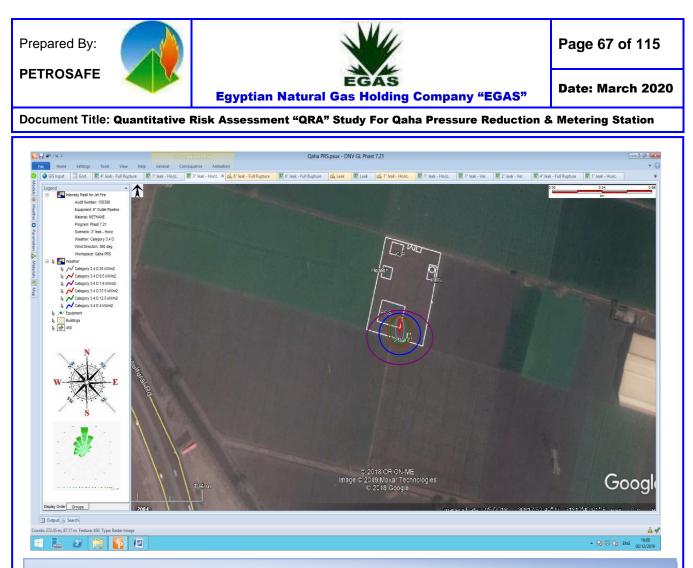


Figure (24) Heat Radiation Contours from Jet Fire (3" hole in 6" Outlet Pipeline)

- The previous figure shows that if there is a gas release from 3" hole size and ignited the expected flame length is about 23.80 meters downwind.
- The 9.5 kW/m^2 heat radiation contours extend about 23 meters downwind and 9.50 meters crosswind.
- The 12.5 kW/m² heat radiation contours extend about 21 meters downwind and 7.60 meters crosswind.
- The 25 kW/m^2 heat radiation contours extend about 17 meters downwind and 3.40 meters crosswind.
- The 37.5 kW/m^2 heat radiation contours extend about 9.60 meters downwind and 1.40 meters crosswind.

The modeling shows that the heat radiation values of 9.5 & 12.5 kW/m^2 will extend outside the PRS boundary south side with no effects downwind, and covering the off-take point crosswind.

The values of 25 & 37.5 kW/m² will be limited inside the boundary effecting the PRS facilities.

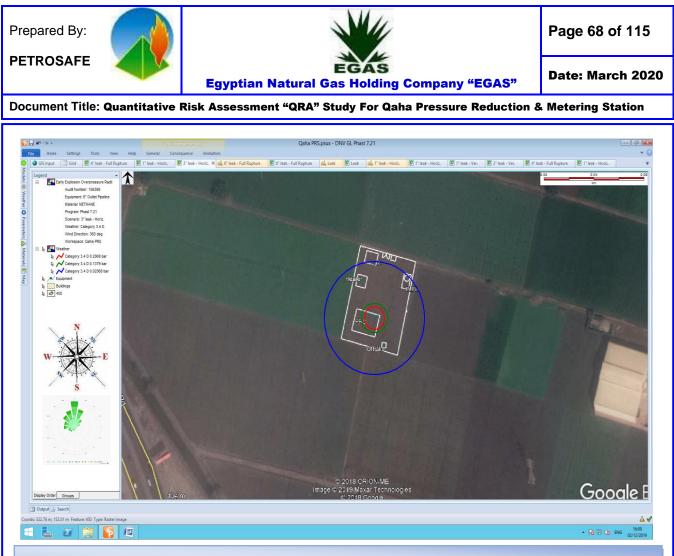


Figure (25) Early Explosion Overpressure Waves (3" hole in 6" Outlet Pipeline)

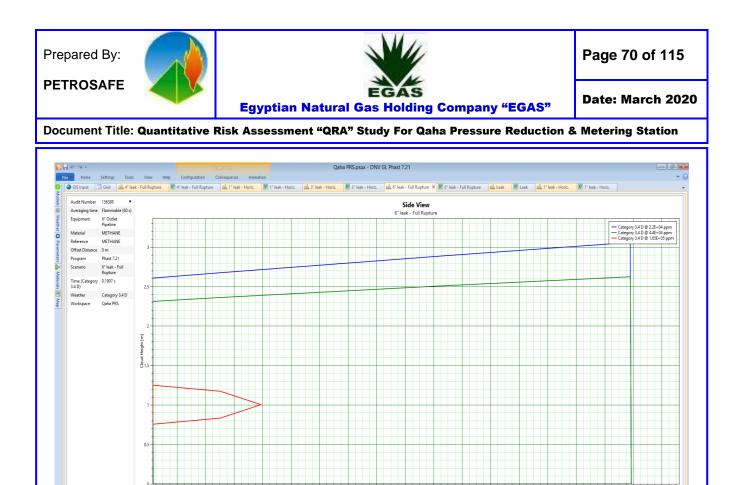
- The previous figure show that if there is a gas release from 3" hole size and early ignited this will give an explosion with different values of overpressure waves.
- The 0.020 bar overpressure waves will extend about 40 meters radius.
- The 0.137 bar overpressure waves will extend about 11 meters radius.
- The 0.206 bar overpressure waves will extend about 8 meters radius.

The modeling shows that the value of 0.020 bar will cover the PRS and extend outside the PRS boundary with no effects outside and covering the firefighting facilities and the heater.

The values of 0.137 & 0.206 bar will be limited inside the PRS boundary effecting the PRS facilities and no effects on site offices.

2/3- Consequence Modeling for 6 inch (Full Rup.) Gas Release

The following table no. (21) Show that:


Table (21) Dispersion Modeling for Outlet - 6" Gas Release

Gas Release							
Wind Category	Flammability Limits	Distance (m)	Height (m)	Cloud Width (m)			
	UFL	9.40	1.65	1.25 @ 8.70 m			
3.4 D	LFL	11.80	0 - 2.60	2.60 @ 11.80 m			
	50 % LFL	11.90	0-3.10	3.10 @ 11.90 m			

Jet Fire							
Wind Category	Flame Length (m)	Heat Radiation (kW/m ²)	Distance Downwind (m)	Distance Crosswind (m)	Lethality Level (%)		
	45.40	1.6	86	54	0		
		4	60	35	0		
3.4 D		9.5	45	21	0		
5.4 D		12.5	41	17	20% /60 sec.		
		25	33	9	80.34		
		37.5	23	5	98.74		

Unconfined Vapor Cloud Explosion - UVCE (Open Air)							
Wind	Pressure Value	Over Press (n		Overpressure Waves Effect / Damage			
Category	(bar)	Early	Late		Effect / Damage		
	0.020	40	N/D	0.021 bar	Probability of serious damage beyond this point = 0.05 - 10 % glass broken		
3.4 D	0.137	11	N/D	0.137 bar	Some severe injuries, death unlikely		
	0.206	8	N/D	0.206 bar	Steel frame buildings distorted / pulled from foundation		

		Fireball	
Wind Category	Heat Radiation (kW/m ²)	Distance (m)	Heat Radiation (kW/m ²) Effects on People & Structures
	1.6	50	<u>12.5</u> 20 % Chance of fatality for 60 sec
	4	30	<i>exposure</i> <u>25</u>
3.4 D	9.5	17	100 % Chance of fatality for
3.4 D	12.5	13	continuous exposure 50 % Chance of fatality for 30 sec
	25	Not Reached	exposure 37.5
	37.5	Not Reached	Sufficient of cause process equipment damage

- The previous figure shows that if there is a gas release from 6" pipeline full rupture without ignition the flammable vapors will reach a distance more than 11 m downwind and from 0 to 3 m height.

Figure (26) Gas Cloud Side View (UFL/LFL) (6" Outlet Pipeline Full Rupture)

e concentration | Conc. vs Time | Footprint | Side View | Cross Section | Max. Co ion | 🗢 Jet Fire | 🎤 Fireball | 👹 Explosions | 🍕 Flash Fire | 🛓 Multi Compon

🛓 🛛 🍔 脣 🖉

10.6 nd [m]

* 😼 😨 😘 ENG

- The UFL will reach a distance of about 9.40 m downwind with a height of 1.65 m. The cloud large width will be 1.25 m crosswind.
- The LFL will reach a distance of about 11.80 m downwind with a height from 0 to 2.60 m. The cloud large width will be 2.60 m crosswind.
- The 50 % LFL will reach a distance of about 11.90 m downwind with a height from 0 to 3.10 m. The cloud large width will be 3.10 m crosswind.

The modeling shows that the gas cloud effects will be limited inside the PRS boundary.

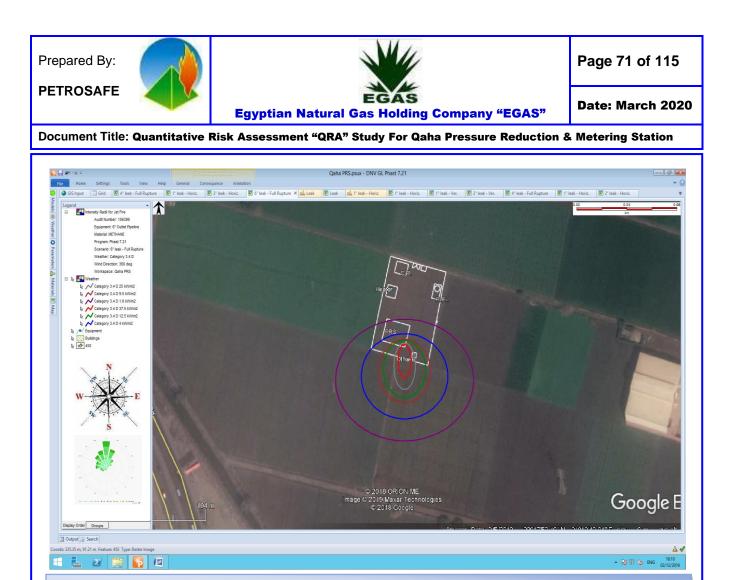


Figure (27) Heat Radiation Contours from Jet Fire (6" Outlet Pipeline Full Rupture)

- The previous figure show that if there is a gas release from 6" pipeline full rupture and ignited the expected flame length is about 35 meters downwind.
- The 9.5 kW/m² heat radiation contours extend about 45 meters downwind and 21 meters crosswind.
- The 12.5 kW/m² heat radiation contours extend about 41 meters downwind and 17 meters crosswind.
- The 25 kW/m^2 heat radiation contours extend about 33 meters downwind and 9 meters crosswind.
- The 37.5 kW/m^2 heat radiation contours extend about 23 meters downwind and 5 meters crosswind.

The modeling shows that the heat radiation values 9.5, 12.5, 25 & 37.5 kW/m^2 will extend outside the south fence with no effects downwind and cover the off-take point crosswind.

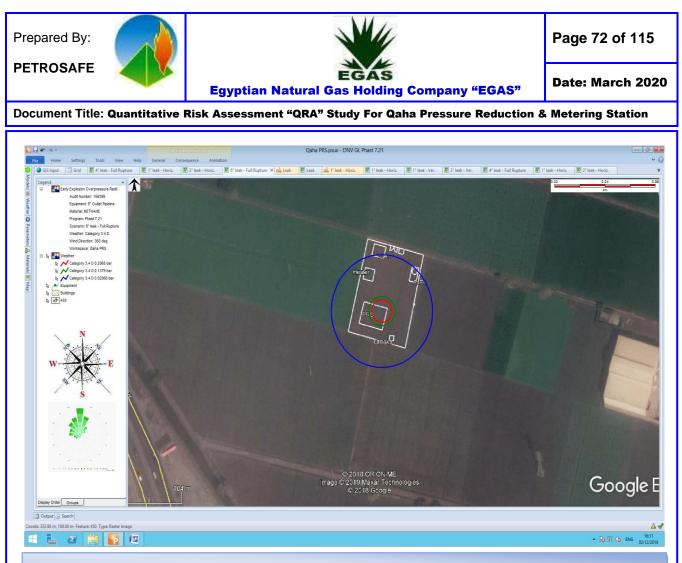


Figure (28) Early Explosion Overpressure Waves (6" Outlet Pipeline Full Rupture)

- The previous figure show that if there is a gas release from 6" hole size and early ignited this will give an explosion with different values of overpressure waves.
- The 0.020 bar overpressure waves will extend about 40 meters radius.
- The 0.137 bar overpressure waves will extend about 11 meters radius.
- The 0.206 bar overpressure waves will extend about 8 meters radius.

The modeling shows that the value of 0.020 bar will cover the PRS and extend outside the PRS boundary with no effects outside and covering the firefighting facilities and the heater.

The values of 0.137 & 0.206 bar will be limited inside the PRS boundary effecting the PRS facilities and no effects on site offices.

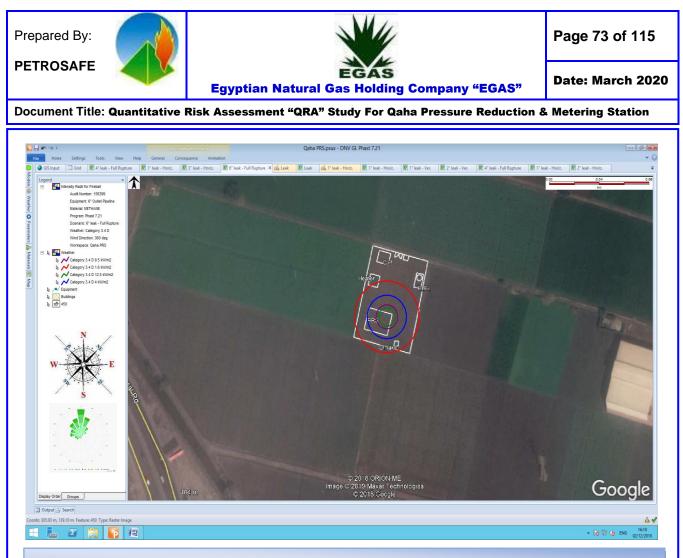


Figure (29) Heat Radiation Contours from Fireball (6" Outlet Pipeline Full Rupture)

- The previous figure show that if there is a gas release from 6" pipeline full rupture and ignited forming fireball this will gives a heat radiation with different values and contours and will extend in four dimensions.
- The 1.6 kW/m^2 heat radiation contours extend about 50 meters radius.
- The 4 kW/m^2 heat radiation contours extend about 30 meters radius.
- The 9.5 kW/m^2 heat radiation contours extend about 17 meters radius.
- The 12.5 kW/m² heat radiation contours extend about 13 meters radius.
- The 25 kW/m² heat radiation not reached.
- The 37.5 kW/m^2 heat radiation not reached.

The modeling shows that the heat radiation values of 1.6, 4, 9.5 & 12.5 kW/m^2 will limited inside the PRS boundary effecting the PRS facilities with some extension (1.6 kW/m^2) down and crosswind.

3.0- Pressure Reduction Station Odorant Tank (Spotleak)

The following table no. (22) Show 1" hole leak form odorant Modeling: *Table (22) Dispersion Modeling for Odorant Tank*

Gas Release									
Wind Cate	gory	Flammab	ility Limits	Distance (r	n)	Heigh	t (m)	Cl	oud Width (m)
		U	FL	27		0 - 0.32		18	
3.4 D	3.4 D L		FL	33.50		0-0	.49		22
		50 %) LFL	44		0-0	.68		38
Jet Fire									
Wind Category		FlameHeatDistrictLengthRadiationDown(m)(kW/m²)(n)			vind	Cre	istance osswine (m)		Lethality Level (%)
			1.6	55		34			0
			4	39	39		22		0
3.4 D		18.96	9.5	31		14			0
5.4 D		10.90	12.5	28			12		20% /60 sec.
			25	24		8			80.34
Π			37.5	21		6			98.74
	Unc	o <mark>nfined</mark> Va	por Cloud	Explosion	- UV	CE (Open	Air	·)
Wind Category	Pres	sure Value	Over Press (n		Overpre			sure Waves	
Category		(bar)	Early	Late		E	ffect /	Dan	nage
		0.020	N/D	45		0.021 bar Probability of serious of beyond this point = 0.05 glass broken			
3.4 D		0.137	N/D	19	0.13 bar		me sev likely	ere	injuries, death
		0.206	N/D	17	0.200 bar		eel frame lled fron		ldings distorted / ndation

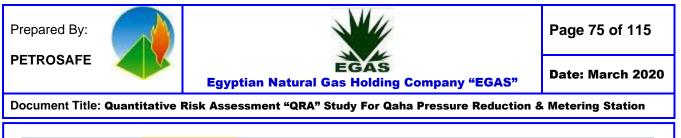


Figure (30) Vapor Cloud (UFL/LFL) Side View Graph (Odorant leak)

- The previous figures show that if there is a leak from odorant tank without ignition the flammable vapors will reach a distance more than 44 m downwind and from 0 to 0.68 m height (the vapors heavier than air).
- The UFL (2.1E+04 ppm) will reach a distance of about 27 m downwind with a height from 0 to 0.32 m. The cloud large width will be 18 m crosswind.
- The LFL (1.4E+04 ppm) will reach a distance of about 33.50 m downwind with a height from 0 to 0.49 m. The cloud large width will be 22 m crosswind.
- The 50 % LFL (7000 ppm) will reach a distance of about 44 m downwind with a height from 0 to 0.68 m. The cloud large width will be 38 m crosswind.

The modeling shows that the vapor cloud will extend inside the PRS boundary reaching the off-take point downwind.

Consideration should be taken when deal with liquid, vapors and smokes according to the MSDS for the material.

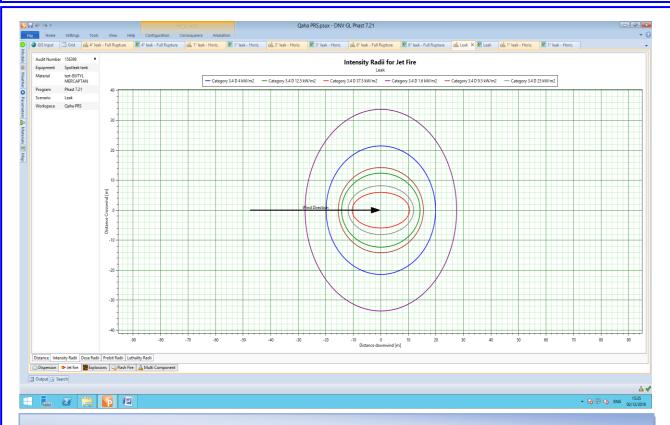
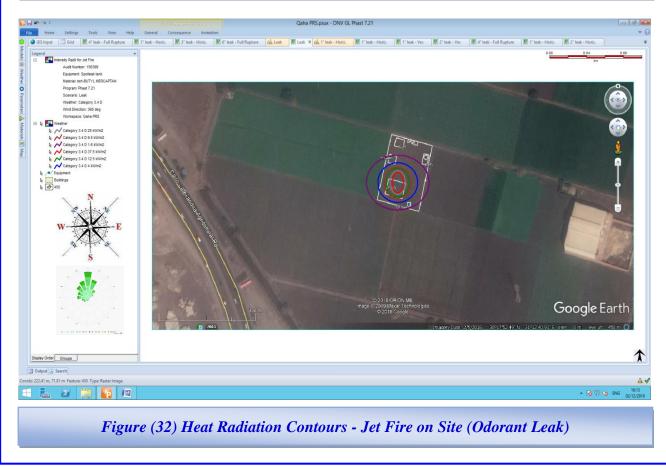



Figure (31) Heat Radiation Contours - Jet Fire Graph (Odorant Leak)

- The previous figure show that if there is a leak from the odorant tank and ignited the expected flame length is about 19 meters downwind.
- The 9.5 kW/m^2 heat radiation contours extend about 31 meters downwind and 14 meters crosswind.
- The 12.5 kW/m² heat radiation contours extend about 28 meters downwind and 12 meters crosswind.
- The 25 kW/m^2 heat radiation contours extend about 24 meters downwind and 8 meters crosswind.
- The 37.5 kW/m^2 heat radiation contours extend about 21 meters downwind and 6 meters crosswind.

The modeling shows that all values of heat radiation 9.5, 12.5, 25 & 37.5 kW/m^2 will be limited inside the PRS boundary down and crosswind.

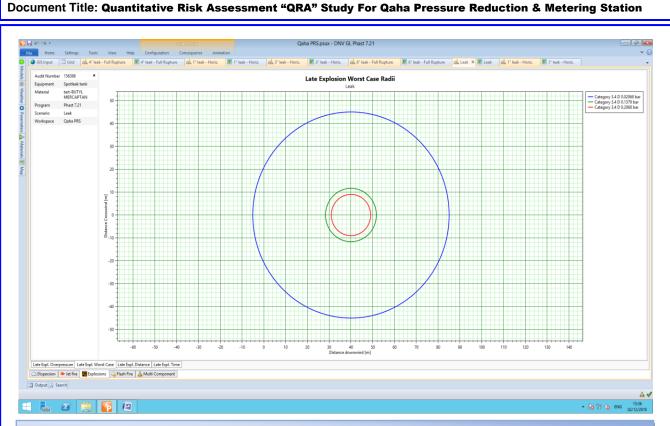
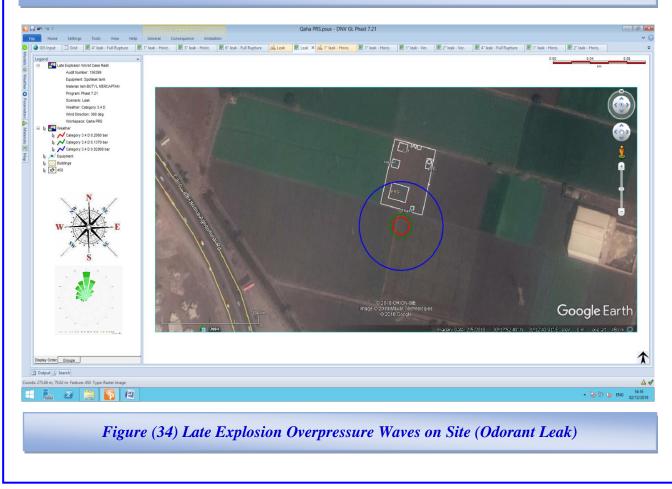
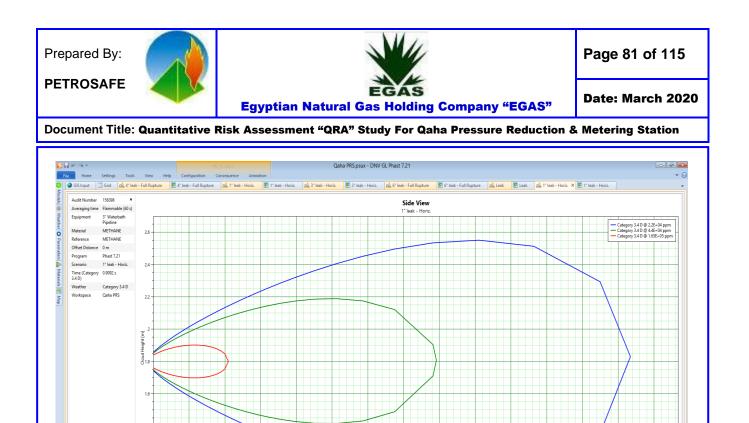



Figure (33) Late Explosion Overpressure Waves Graph (Odorant Leak)

- The previous figure show that if there is a leak from the odorant tank and late ignited this will give an explosion with different values of overpressure waves.
- The 0.020 bar overpressure waves will extend about 45 meters radius.
- The 0.137 bar overpressure waves will extend about 19 meters radius.
- The 0.206 bar overpressure waves will extend about 17 meters radius.

The modeling shows that the value of 0.020 bar will cover the PRS facilities inside and extend outside from S/E/W sides with no effects.


The values of 0.137 & 0.206 bar will extend outside the PRS boundary from south side with no effects down or crosswind.

4.0- Gas Heater (Water Bath Heating System)

The following table no. (23) Show 1" hole leak form the heater Modeling: *Table (23) Dispersion Modeling for Heater Tank*

Wind Catego	orv Flammab								
		ility Limits	Distance (n	1)	Height (m)	Cloud Width (m)			
	U	FL	2.15		1.90	0.20 @ 1.00 m			
3.4 D L		FL	7.90		2.20	0.80 @ 5.00 m			
	50 %) LFL	13.40		0-2.55	2.55 @ 9.00 m			
Jet Fire									
Wind Category	y Flame Heat Distance Length Radiation Downwind (m) (kW/m ²) (m)			Distance Crosswin (m)					
		1.6	19		13	0			
		4		15		0			
3.4 D	13 -	9.5	9		4	0			
3.4 D	15	12.5	8		3	20% /60 sec.			
		25	Not Reached		Not Reache	ed 80.34			
		37.5	Not Rea	ched	Not Reache	ed 98.74			
τ	Unconfined Va	por Cloud	Explosion	- UV	CE (Open	Air)			
Wind Category	Pressure Value	Over Press (n			-	Overpressure Waves			
Cutegory	(bar)	Early	Late		Effect /	Damage			
	0.020	66	N/D	0.02 bar	L beyond thi	ty of serious damage is point = 0.05 - 10 % ten			
3.4 D	0.137	17	N/D	0.13 bar		vere injuries, death			
	0.206	13	N/D	N/D		•		e buildings distorted / n foundation	

- The previous figure shows that if there is a gas release from heater pipe without ignition the flammable vapors will reach a distance about 13 m downwind and from 0 to 2.55 m height.

Figure (35) Vapor Cloud (UFL/LFL) Side View Graph (Gas Heater)

- 🍺 🗊 👍 ENG

on 🗢 Jet fire 🖌 Fireball 📲 Explosions 🖓 Flash Fire 👗 Multi Con

2 📋 🛐 🚇

- The UFL will reach a distance of about 2.15 m downwind with a height of 1.90 m. The cloud large width will be 0.20 m.
- The LFL will reach a distance of about 7.90 m downwind with a height of 2.20 m. The cloud large width will be 0.80 m.
- The 50 % LFL will reach a distance of about 13.40 m downwind with a height from 0 to 2.55 m. The cloud large width will be 2.55 m.

The modeling shows that the vapor cloud will extend inside the PRS boundary downwind reaching the PRS facilities.

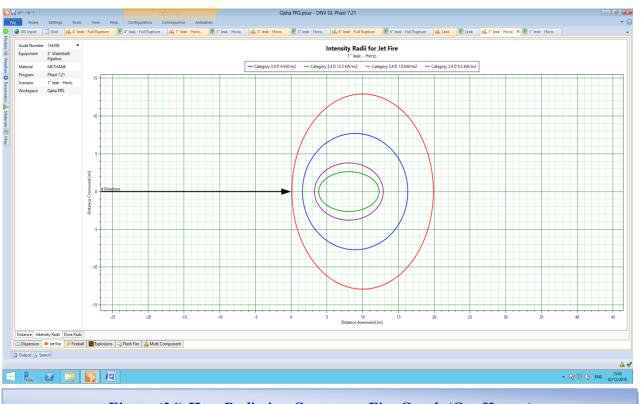
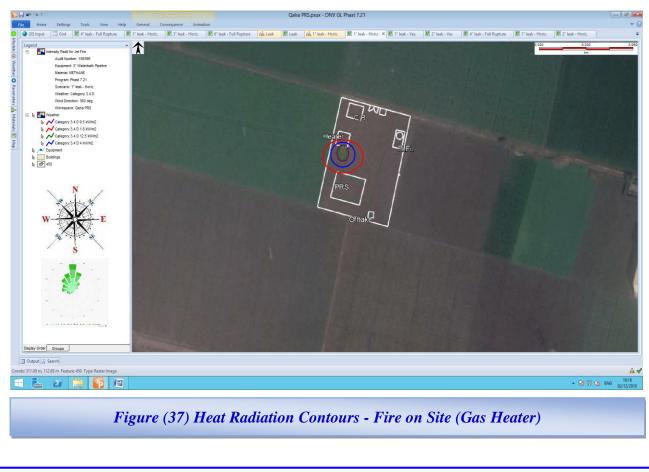



Figure (36) Heat Radiation Contours - Fire Graph (Gas Heater)

- Document Title: Quantitative Risk Assessment "QRA" Study For Qaha Pressure Reduction & Metering Station
 - The previous figure show that if there is a leak from the heater and ignited the expected flame length is about 13 meters downwind.
 - The 1.6 kW/m² heat radiation contours extend about 19 meters downwind and 13 meters crosswind.
 - The 4 kW/m² heat radiation contours extend about 15 meters downwind and 8 meters crosswind.
 - The 9.5 kW/m² heat radiation contours extend about 9 meters downwind and 4 meters crosswind.
 - The 12.5 kW/m^2 heat radiation contours extend about 8 meters downwind and 3 meters crosswind.
 - The 25 kW/m² heat radiation not reached.
 - The 37.5 kW/m^2 heat radiation not reached.

The modeling shows that the heat radiation value 1.6, 4, 9.5 & 12.5 kW/m^2 effects will be limited inside the PRS boundary with no effects.

The values of 25 & 37.5 kW/m² not determined by the software due to small leakage.

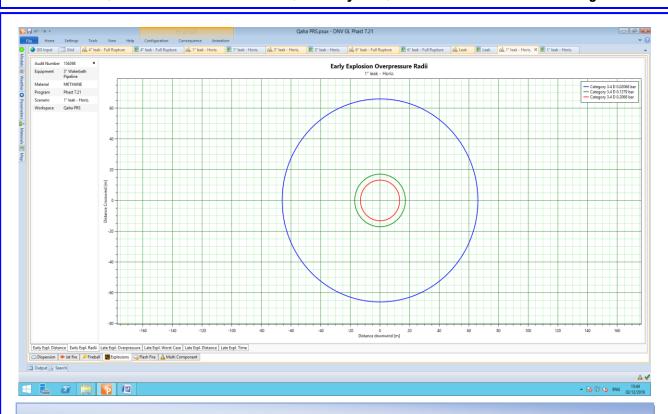
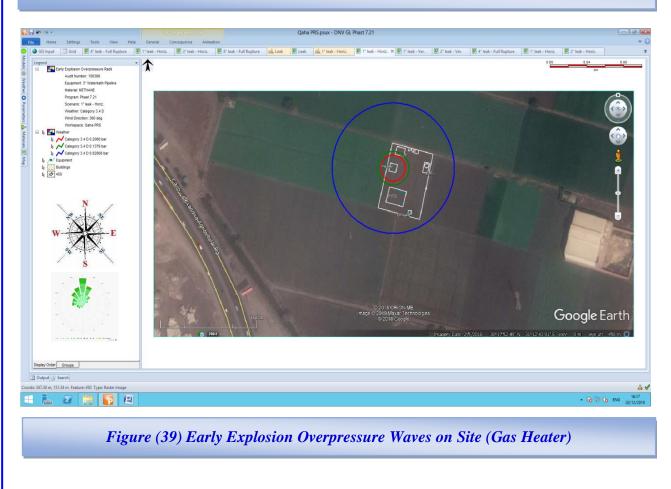



Figure (38) Early Explosion Overpressure Waves Graph (Gas Heater)

- The previous figure show that if there is a leak from the heater and early ignited this will give an explosion with different values of overpressure waves.
- The 0.020 bar overpressure waves will extend about 66 meters radius.
- The 0.137 bar overpressure waves will extend about 17 meters radius.
- The 0.206 bar overpressure waves will extend about 13 meters radius.

The modeling shows that the value of 0.020 bar will extend outside the PRS from all sides covering the area surrounded with no effects outside.

The value of 0.137 & 0.206 bar will be limited inside the PRS and near to the control room.

PETROSAFE

Page 86 of 115

Date: March 2020

Document Title: Quantitative Risk Assessment "QRA" Study For Qaha Pressure Reduction & Metering Station

5.0- Pressure Reduction Station Off-Take Pipeline (4 inch)

5/1- Consequence Modeling for 1 inch (Pin Hole) Gas Release

The following table no. (24) Show that:

Table (24) Dispersion Modeling for Off-take - 1" / 4" Gas Release

Gas Release										
Wind Categ	gory	Flammabi	ility Limits	Ľ	Distance (1	m)	He	ight (m)	Cl	oud Width (m)
	UFL		FL	0.13			0.84		0.24	
3.4 D	3.4 D L		FL		0.20			0.85		0.40
	50 % LFL		LFL		0.23			0.86		0.46
Jet Fire										
Wind Category		Flame LengthHeat Radiation(m)(kW/m²)			Distan Downw (m)			Distance Crosswine (m)		Lethality Level (%)
<u>L</u>			1.6	30			16		0	
			4		14		7			0
3.4 D	10.80		9.5		Not Reached		N	lot Reache	ed	0
J.4 D		10.80	12.5		Not Reached		N	lot Reache	ed	20% /60 sec.
			25		Not Reached		ned Not Reache		ed	80.34
			37.5		Not Read	ched	N	lot Reache	ed	98.74
	Unc	o <mark>nfined</mark> Va	por Cloud	E xj	plosion	- UV	/CF	C (Open	Air	·)
Wind Category	Pres	sure Value	Over Press (n		Radius		0)verpress Effect / 1		
Cutegory		(bar)	Early		Late		<u>,</u>	Effect /	Dai	nage
		0.020	N/D		N/D	0.021 bar Probability of serious dam beyond this point = 0.05 - 10 glass broken				
3.4 D		0.137	N/D		N/D	0.13 ba		Some sev unlikely	ere	injuries, death
		0.206	N/D		N/D	0.20 ba			Steel frame buildings distorted / pulled from foundation	

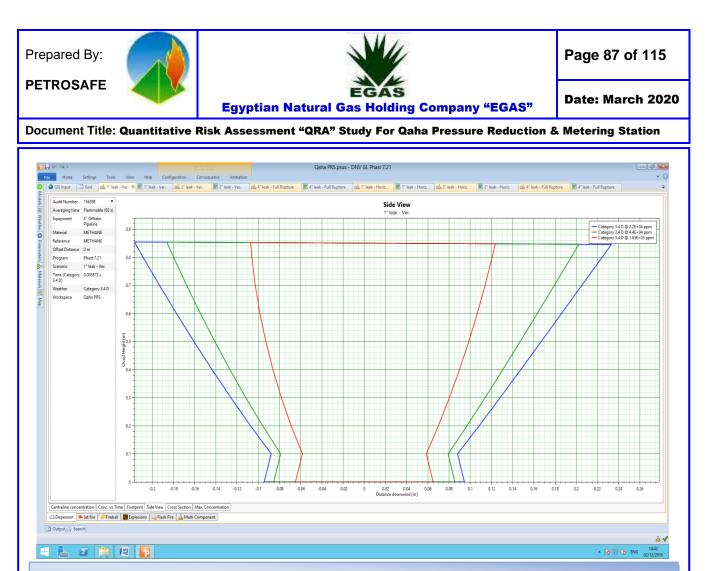
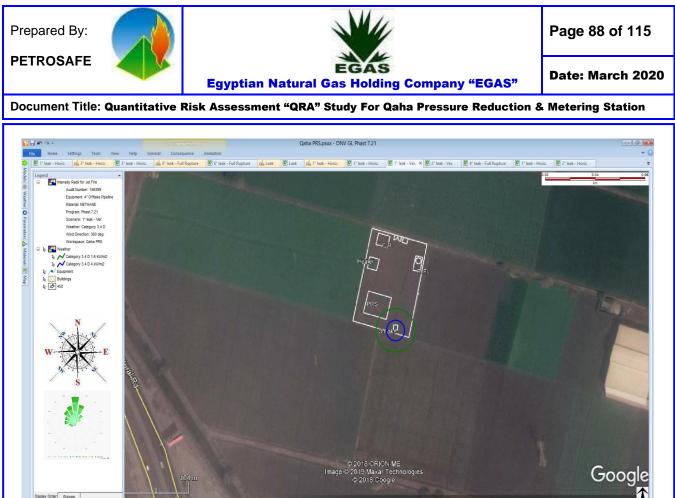



Figure (40) Gas Cloud Side View (UFL/LFL) (1" hole in 4" off-take Pipeline)

- The previous figure shows that if there is a gas release from 1" hole size without ignition the flammable vapors will reach a distance about 0.23 m downwind and 0.86 m height above ground (the tie-in point is under ground with about 5 meters).
- The UFL will reach a distance of about 0.13 m downwind with a height of 0.84 m. The cloud large width will be 0.24 m.
- The LFL will reach a distance of about 0.20 m downwind with a height of 0.85 m. The cloud large width will be 0.40 m.
- The 50 % LFL will reach a distance of about 0.23 m downwind with a height 0.86 m. The cloud large width will be 0.46 m.

The modeling shows that the gas cloud effects will be limited inside the PRS boundary.

Dapity Order Groups Courput Courput Courput Courput Courput Courput Courds 256.06 m, 96.31 m Feature 450 Type Raster Image Course 260.06 m, 96.31 m Feature 450 Type Raster Image

Figure (41) Heat Radiation Contours from Jet Fire (1" hole in 4" off-take Pipeline)

- The previous figure show that if there is a gas release from 1" hole size and ignited the expected flame length is about 10 meters height.

• 😼 🖗 🌜 ENG

- The 1.6 kW/m^2 heat radiation contours extend about 30 meters downwind and 16 meters crosswind.
- The 4 kW/m² heat radiation contours extend about 14 meters downwind and 7 meters crosswind.
- The 9.5 kW/m^2 heat radiation not determined.
- The 12.5 kW/m^2 heat radiation not determined.
- The 25 kW/m^2 heat radiation not determined.
- The 37.5 kW/m^2 heat radiation not determined.

The modeling shows that the heat radiation value of 1.6 & 4 kW/m^2 will be limited inside the PRS boundary with some extension outside from south side with no effects.

5/2- Consequence Modeling for 2 inch (Half Rup.) Gas Release

The following table no. (25) Show that:

Table (25) Dispersion Modeling for Off-take - 2" / 4" Gas Release

Gas Release									
Wind Categ	ory	Flammabi	ility Limits	Distance	(m)	Height (m)	Cloud Width (m)		
	U		FL	0.32		2.43	0.66		
3.4 D		L	FL	0.56		2.44	1.10		
		50 %	LFL	0.64		2.45	1.30		
Jet Fire									
Wind Category					nce vind	Distance Crosswin (m)	•		
<u>L</u>			1.6	65		33	0		
	23.30		4	30		15	0		
3.4 D			9.5	Not Rea	ched	Not Reache	ed 0.72		
J. T D			12.5	Not Rea	ched	Not Reache	ed 20% /60 sec.		
		_	25	Not Rea	ched	Not Reache	ed 80.34		
			37.5	Not Rea	ched	Not Reache	ed 98.74		
	Unco	o <mark>nfined</mark> Va	por Cloud	Explosion	- UV	CE (Open	Air)		
Wind Category	Press	sure Value	Over Press (n			-	ure Waves		
Category		(bar)	Early	Late		Effect /	Damage		
		0.020	N/D	N/D		0.021 bar Probability of serious beyond this point = 0.05 glass broken			
3.4 D		0.137	N/D	N/D	0.13 bar		ere injuries, death		
		0.206	N/D	N/D	0.20 bar	· · · · ·	e buildings distorted / 1 foundation		

 -4.5
 -4.4
 -4.3
 -4.2
 -0.1
 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.5
 0.7

 Certedire concentration
 Concentration

Figure (42) Gas Cloud Side View (UFL/LFL) (2" hole in 4" off-take Pipeline)

- The previous figure shows that if there is a gas release from 2" hole size without ignition the flammable vapors will reach a distance about 0.64 m downwind and 2.45 m height above ground (the tie-in point is under ground with about 5 meters).
- The UFL will reach a distance of about 0.32 m downwind with a height of 2.43 m. The cloud large width will be 0.66 m.
- The LFL will reach a distance of about 0.56 m downwind with a height of 2.44 m. The cloud large width will be 1.10 m.
- The 50 % LFL will reach a distance of about 0.64 m downwind with a height 2.45 m. The cloud large width will be 1.30 m.

The modeling shows that the gas cloud effects will be limited inside the PRS boundary.

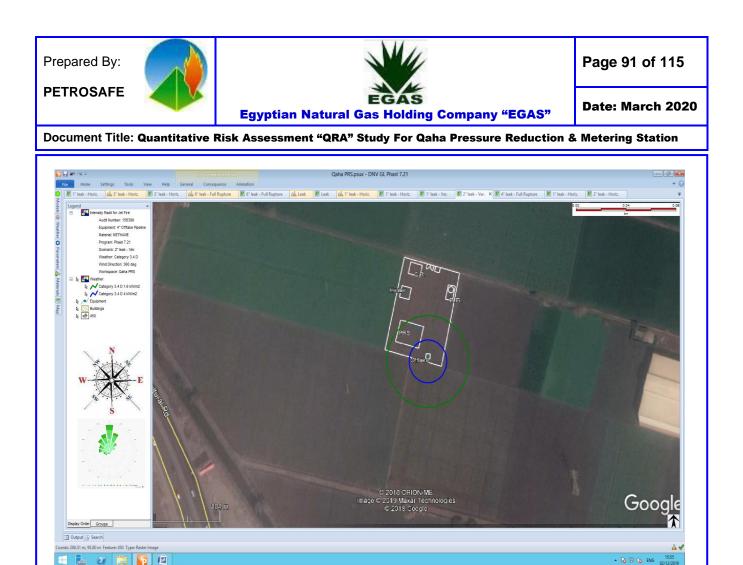


Figure (43) Heat Radiation Contours from Jet Fire (2" hole in 4" off-take Pipeline)

- The previous figure show that if there is a gas release from 2" hole size and ignited the expected flame length is about 23.30 meters height.
- The 1.6 kW/m² heat radiation contours extend about 65 meters downwind and 33 meters crosswind.
- The 4 kW/m² heat radiation contours extend about 30 meters downwind and 15 meters crosswind.
- The 9.5 kW/m^2 heat radiation not determined.
- The 12.5 kW/m² heat radiation not determined.
- The 25 kW/m² heat radiation not determined.
- The 37.5 kW/m^2 heat radiation not determined.

The modeling shows that the heat radiation value of 1.6 & 4 kW/m² will cover the PRS facilities and off-take point and extend outside the south and east fences down and crosswind with no effects.

PETROSAFE

Page 92 of 115

Date: March 2020

Document Title: Quantitative Risk Assessment "QRA" Study For Qaha Pressure Reduction & Metering Station

5/3- Consequence Modeling for 4 inch (Full Rup.) Gas Release

The following table no. (26) Show that:

Table (26) Dispersion Modeling for Off-take - 4" Gas Release

Gas Release									
Wind Category	Flammability Limits	Distance (m)	Height (m)	Cloud Width (m)					
	UFL	0.85	10.50	1.40					
3.4 D	LFL	2.50	11.50	4					
	50 % LFL	3	12	5.10					

Jet Fire Flame Heat Distance Lethality Distance Wind Length Radiation Downwind Crosswind Level Category (kW/m^2) (%) (m) (m) (m) 1.6 74 121 0 4 82 46 0 9.5 58 28 0 3.4 D 58.30 20% /60 sec. 12.5 51 23 25 42 13 80.34 98.74 37.5 32 8

	Unconfined Vapor Cloud Explosion - UVCE (Open Air)									
Wind	Pressure Value	Over Press (n		Overpressure Waves Effect / Damage						
Category	(bar)	Early	Late		Effect / Damage					
	0.020	N/D	N/D	0.021 bar	Probability of serious damage beyond this point = 0.05 - 10 % glass broken					
3.4 D	0.137	N/D	N/D	0.137 bar	Some severe injuries, death unlikely					
	0.206	N/D	N/D	0.206 bar	Steel frame buildings distorted / pulled from foundation					

		Fireball	
Wind Category	Heat Radiation (kW/m ²)	Distance (m)	Heat Radiation (kW/m ²) Effects on People & Structures
	1.6	Not Determined	<u>12.5</u> 20 % Chance of fatality for 60 sec exposure
	4	Not Determined	<i>exposure</i> <u>25</u>
3.4 D	9.5	Not Determined	100 % Chance of fatality for
5.4 D	12.5	Not Determined	continuous exposure 50 % Chance of fatality for 30 sec
	25	Not Determined	exposure 37.5
	37.5	Not Determined	Sufficient of cause process equipment damage

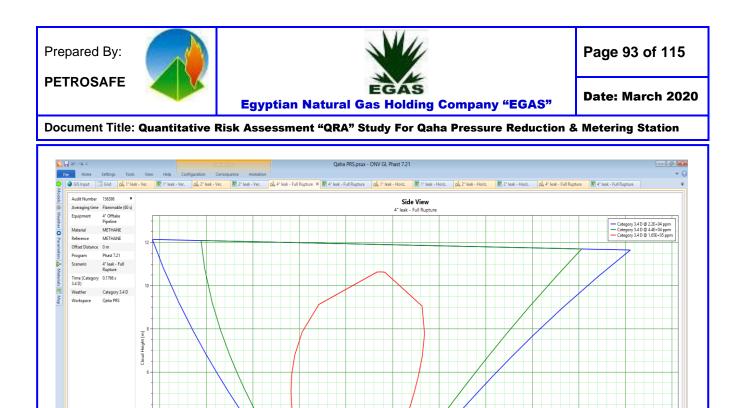


Figure (44) Gas Cloud Side View (UFL/LFL) (4" off-take Pipeline Full Rupture)

concentration | Conc. vs Time | Footprint | Side View | Cross Section | Max. Cr

🗄 🛓 🛛 🎒 🖉 🎦

- The previous figure show that if there is a gas release from 4" pipeline full rupture without ignition the flammable vapors will reach a distance more than 0.85 m downwind and over 12 m height above ground (the tie-in point is under ground with about 5 meters).

* 😼 😳 👍 ENG

- The UFL will reach a distance of about 0.85 m downwind with a height of 10.50 m. The cloud large width will be 1.40 m.
- The LFL will reach a distance of about 2.50 m downwind with a height of 11.50 m. The cloud large width will be 4 m.
- The 50 % LFL will reach a distance of about 3 m downwind with a height of 12 m. The cloud large width will be 5.10 m.

The modeling shows that the gas cloud will be limited inside the PRS boundary with some extension outside from south side downwind.

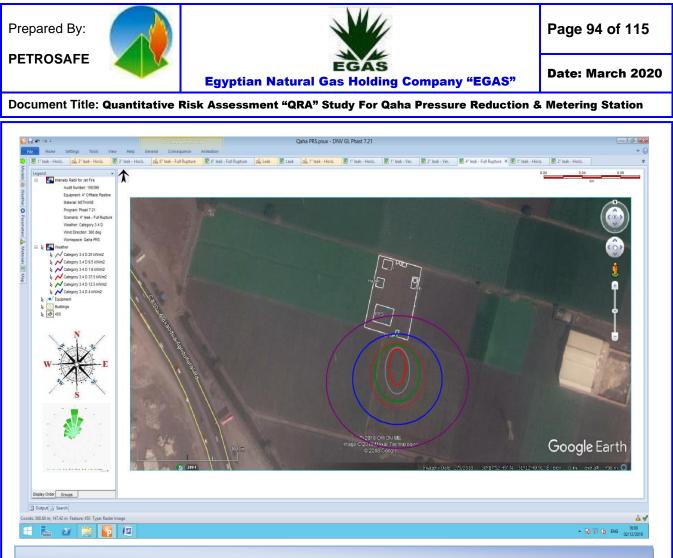


Figure (45) Heat Radiation Contours from Jet Fire (4" off-take Pipeline Full Rupture)

- The previous figure show that if there is a gas release from 4" pipeline full rupture and ignited the expected flame length is about 58 meters height.
- The 9.5 kW/m^2 heat radiation contours extend about 58 meters downwind and 28 meters crosswind.
- The 12.5 kW/m² heat radiation contours extend about 51 meters downwind and 23 meters crosswind.
- The 25 kW/m² heat radiation contours extend about 42 meters downwind and 13 meters crosswind.
- The 37.5 kW/m^2 heat radiation contours extend about 32 meters downwind and 8 meters crosswind.

The modeling shows that the heat radiation values will extend outside the PRS south fence downwind with no effects on surrounding area.

Individual Risk Evaluation

• Risk Calculation

All identified hazards should be subject to an evaluation for risk potential. This means analyzing the hazard for its probability to actually progress to loss event, as well as likely consequences of this event.

There are four steps to calculate risk, which determined as follows:

- 1- Identify failure frequency (International Data Base)
- 2- Calculating the frequency against control measures at site by using Event Tree Analysis "ETA".
- 3- Identify scenarios probability.
- 4- Calculated risk to people regarding to the vulnerability of life loses.

Basically, risk will be calculated as presented in the following equation:

<u>Risk to people (Individual Risk – IR) =</u>

Total Risk (*S***Frequency of fire/explosion)** *x* **Occupancy x Vulnerability**

Where:

<u>Total risk</u>	Is the sum of contributions from all hazards exposed to (fire / explosion).
<u>Occupancy</u>	Is the proportion of time exposed to work hazards. (Expected that x man the most exposed person to fire/explosion hazards on site. He works 8 hours shift/day)
<u>Vulnerability</u>	<i>Is the probability that exposure to the hazard will result in fatality.</i>

As shown in tables (5 & 6) - (Page: 32 & 33) the vulnerability of people to heat radiation starting from 12 kW/m² will lead to fatality accident for 60 sec. Exposure and for explosion over pressure starting from 0.137 bar.

The modeling of the different scenarios shows that the heat radiation and explosion overpressure waves would be a result from release scenarios for all sizes of crack and according to the space size for the PRMS, all of the sequence will be determined for three values release (small, medium and large).

Calculating frequencies needs a very comprehensive calculations which needs a lot of data collecting related to failure of equipment's and accident reporting with detailed investigation to know the failure frequency rates in order to calculate risks from scenarios.

In this study, it decided that to use an International Data Bank for major hazardous incident data.

The following table (27) show frequency for each failure can be raised in pressure reduction station operations:

PETROSAFE

Page 97 of 115

Date: March 2020

		equency for Each Scenario	
Scenario	Release Siz	ze	
Gas Release from	Small		r
1"/4"-6" Pipeline / 3" Gas Heater		Failure Cause	Failure Rate
		Internal Corrosion	1.19E-05
		External Corrosion	3.55E-06
		Maintenance Error	2.28E-05
		Corrosive Liquid or Gas	4.84E-04
		Total	<i>5.22E-04</i>
Gas Release from	Medium		
2"/4"&3"/6" Pipeline		Failure Cause	Failure Rate
		Internal Corrosion	2.71E-05
		External Corrosion	8.24E-06
		Erosion	4.85E-04
		Total	<i>5.20E-04</i>
Gas Release from	Large		
4" / 6" Pipeline Full Rupture		Failure Cause	Failure Rate
		Internal Corrosion	5.53E-06
		External Corrosion	1.61E-06
		Weld Crack	4.34E-06
		Earthquake	1.33E-07
		Total	1.16E-05
Spotleak	Medium		
(Odorant Tank)		As a package	Failure Rate
<u>Reference: Taylor Associates ApS - 2006</u> (Hazardous Materials Release and Acciden, Plant - Volume II / Process Unit Release Frequ			1.25E-05

• Event Tree Analysis

An event tree is a graphical way of showing the possible outcomes of a hazardous event, such as a failure of equipment or human error.

An ETA involves determining the responses of systems and operators to the hazardous event in order to determine all possible alternative outcomes.

The result of the ETA is a series of scenarios arising from different sets of failures or errors.

These scenarios describe the possible accident outcomes in terms of the sequence of events (successes or failures of safety functions) that follow the initial hazardous event.

Event trees shall be used to identify the various escalation paths that can occur in the process. After these escalation paths are identified, the specific combinations of failures that can lead to defined outcomes can then be determined.

This allows identification of additional barriers to reduce the likelihood of such escalation.

The results of an ETA are the event tree models and the safety system successes or failures that lead to each defined outcome.

Accident sequences represents in an event tree represent logical and combinations of events; thus, these sequences can be put into the form of a fault tree model for further qualitative analysis.

These results may be used to identify design and procedural weaknesses, and normally to provide recommendations for reducing the likelihood and/or consequences of the analyzed potential accidents.

Using ETA requires knowledge of potential initiating events (that is, equipment failures or system upsets that can potentially cause an accident), and knowledge of safety system functions or emergency procedures that potentially mitigate the effects of each initiating event.

The equipment failures, system upsets and safety system functions shall be extracted from the likelihood data presented before.

In the case of hydrocarbon release, the event tree first branch is typically represents "Early Ignition". These events are represented in the risk analysis as jet fire events.

This is because sufficient time is unlikely to elapse before ignition for a gas/air mixture to accumulate and cause either a flash fire or a gas hazard.

Subsequent branches for these events represent gas detection, fire detection, inventory isolation (or ESD) or deluge activation.

Delayed ignitions are typically represented by the fifth branch event. This is because, in the time taken for an ignition to occur, sufficient time is more likely to elapse for gas detection and inventory isolation.

The scenario development shall be performed for the following cases:

- Without any control measures
- With control measures

The event tree analysis outcomes can be classified into three main categories as follows:

"Limited Consequence"	Indicates that the release has been detected and the inventory source has been isolated automatically.
"Controlled Consequence"	Indicates that the release has been detected but the source has not been isolated automatically. [Needs human intervention].
"Escalated Consequence"	Indicates that the release has not been detected and consequently the source has not been isolated.

The event trees analysis for each scenario are presented in the below pages:

Quantitative Risk Assessment "QRA" Study For Qaha Pressure Reduction and Metering Station

Table (28) Inlet 4" / Outlet 6" / Off-Take 4" / Pipeline & Gas Heater Scenarios (Pin Hole Crack – 1" Release) – Event Tree Analysis **Release of Flammable** ESD Immediate Fire Fire Delayed **Outcomes** Frequency **Detection** ⁽³⁾ Protec. ⁽³⁾ Ignition ⁽²⁾ Materials⁽¹⁾ Ignition ⁽²⁾ System⁽³⁾ 5.22E-04 0.02 0.978 0.02 0.6 0.97 0.97 Yes Controlled Jet fire 1.01E-05 0.6 Yes 0.03 No Not controlled jet 3.13E-07 Yes 0.02 fire 0.4 No Escalated jet fire 4.18E-06 5.22E-04 Yes 0.978 Limited release _____ 0.022 No Large release 1.13E-05 No 0.98 0.02 Yes Escalated jet fire 1.02E-05 0.98 No Escalated release 5.01E-04 (1) Refer to QRA Study Page 97. (Taylor Associates ApS - 2006) (2) Ref. Handbook Failure Frequencies 2009. TOTAL 1.47E-05 (3) Ref. OGP – Report No. 434 – A1 / 2010.

Quantitative Risk Assessment "QRA" Study For Qaha Pressure Reduction and Metering Station

Table (29) Inlet 4" / Outlet 6" / Off-Take 4" Pipeline Scenarios (Half Rupture Release) – Event Tree Analysis

Release of Flammable Materials ⁽¹⁾	Immediate Ignition ⁽²⁾	Fire Detection ⁽³⁾	ESD System ⁽³⁾	Fire Protec. ⁽³⁾	Delayed Ignition ⁽²⁾	Outcomes	Frequency
5.20E-04	0.02	0.6	0.978	0.97	0.02		
	Yes 0.02	Yes 0.6		Yes 0.97 No 0.03		Controlled Jet fire Not controlled jet fire	1.01E-05 3.12E-07
		No 0.4				Escalated jet fire	4.16E-06
5.20E-04			Yes 0.978			Limited release	
	No 0.98		No 0.022			Large release	1.12E-05
	110 0.98				Yes 0.02	• Escalated jet fire	1.02E-05
(1) Refer to QRA Study Pag	ge 97. (Taylor Associat	tes ApS - 2006)			No 0.98	Escalated release	4.99E-04
(2) Ref. Handbook Failure I(3) Ref. OGP – Report No.					-	TOTAL	1.46E-05

Quantitative Risk Assessment "QRA" Study For Qaha Pressure Reduction and Metering Station

Table (30) Off-Take 4" / Inlet 4" / Outlet 6" Pipeline Scenarios (Full Rupture Release) – Event Tree Analysis

Release of Flammable Materials ⁽¹⁾	Immediate Ignition ⁽²⁾	Fire Detection ⁽³⁾	ESD System ⁽³⁾	Fire Protec. ⁽³⁾	Delayed Ignition ⁽²⁾	Outcomes	Frequency
1.16E-05	0.04	0.6	0.978	0.97	0.04		
	Yes 0.04	Yes 0.6		Yes 0.97 No 0.03		Controlled Jet fire Not controlled jet fire	4.50E-07 1.39E-08
		No 0.4				Escalated jet fire	1.86E-07
1.16E-05			Yes 0.978			Limited release	
	No 0.96		No 0.022			Large release	2.45E-07
					Yes 0.04	Escalated jet fire	4.45E-07
(1) Refer to QRA Study Pag	ge 97. (Taylor Associat	es ApS - 2006)			No 0.96	Escalated release	1.07E-05
(2) Ref. Handbook Failure I(3) Ref. OGP – Report No.	-					TOTAL	6.45E-07

Quantitative Risk Assessment "QRA" Study For Qaha Pressure Reduction and Metering Station

Release of Flammable Materials ⁽¹⁾	Immediate Ignition ⁽²⁾	Fire Detection ⁽³⁾	ESD System ⁽³⁾	Fire Protec. ⁽³⁾	Delayed Ignition ⁽²⁾	Outcomes	Frequency
1.25E-05	0.2	0.6	0.978	0.97	0.065		
		Yes 0.6		Yes 0.97		Controlled fire	2.43E-06
	Yes 0.2			No 0.03		Large fire	7.50E-08
		No 0.4				Escalated fire	1.00E-06
1.25E-05			Yes 0.978			Limited leak	
	No 0.8		No 0.022			Large leak	2.20E-07
					Yes 0.065	Escalated fire	6.50E-07
(1) Defense ODA Study De	~ 07 (T 1 4 \cdot]		No 0.935	Escalated leak	9.35E-06
 (1) Refer to QRA Study Page (2) Ref. Handbook Failure 1 		tes ApS - 2006)		-	-	<u> </u>	
(3) Ref. OGP – Report No.	-					TOTAL	1.13E-05

PETROSAFE

Date: March 2020

Document Title: Quantitative Risk Assessment "QRA" Study For Qaha Pressure Reduction & Metering Station

The following table (32) show the total frequency for each scenario from ETA - Tables (28 to 31):

 Table (32) Total Frequencies for Each Scenario
 Image: Comparison of Comparison of

Source of Release	Total Frequency (ETA)
1" / 4" Inlet Pipeline Pin Hole	
1" / 4" Outlet Pipeline Pin Hole	1.47E-05
1" / 6" Off-Take Pipeline Pin Hole	1.4/ <i>E-</i> 03
1" / 3" Gas Heater Pin Hole	
2" / 4" Inlet Pipeline Half Rupture	1.46E-05
2" / 4" Outlet Pipeline Half Rupture	
3" / 6" Off-Take Pipeline Half Rupture	
4" Inlet Pipeline Full Rupture	
4" Off-Take Pipeline Full Rupture	6.45E-07
6" Outlet Pipeline Full Rupture	
Odorant Tank 1" hole Leak	1.13E-05

The following table (33) summarize the risk events on workers / public, and as there is no direct effects on public from any of the scenarios it will be assume that one person (as public) works as farmer for 1 hour / day light.

Table No. (33) Summarize the Risk on Workers / Public (Occupancy)

Inlet 4" Pipeline Release Scenarios						
_	Event	Jet / Pool Fire	(12.5 kW/m^2)	Explosion Overpressure (0.137 bar)		
	Exposure	Workers Public		Workers	Public	
Pin Hole	1"	None	None	None	None	
Half Rupture	2"	None	<i>1 for 1 h (0.04)</i>	None	None	
Full Rupture	4"	None	<i>1 for 1 h (0.04)</i>	None	None	
Outlet 6" Pip	eline Rel	lease Scenarios	-			
Pin Hole	1"	None	None	None	None	
Half Rupture	3"	None	None	None	None	
Full Rupture	6"	None	<i>1 for 1 h (0.04)</i>	None	None	
Odorant Tan	k Release	e Scenario	-			
Small Leak	1"	None	None	None	<i>1 for 1 h (0.04)</i>	
Gas heater (w	vater bat	h heating system)	-			
Pin Hole	1"	None	None	2 for 24 h (2)	None	
Off-Take 4"	Pipeline 1	Release Scenarios				
Pin Hole	1"	None	None	None	None	
Half Rupture	2"	None	None	None	None	
Full Rupture	4"	None	<i>1 for 1 h (0.04)</i>	None	None	

PETROSAFE

Page 105 of 115

Date: March 2020

Document Title: Quantitative Risk Assessment "QRA" Study For Qaha Pressure Reduction & Metering Station

Therefore, the risk calculation will depend on total risk from these scenarios, and as per the equation page (95):

<u>Risk to People (Individual Risk – IR) =</u>

Total Risk (ΣFrequency of fire/explosion) x Occupancy x Vulnerability

Where:

Total risk - is the sum of contributions from all hazards exposed to (fire / explosion).

(Frequencies of Scenarios from Table-32)

Occupancy - is the proportion of time exposed to work hazards. (Expected that X man the most exposed person to fire/explosion hazards on site. He works 8 hours "shift/day").

(as per Egypt Gas data, Qaha PRMS occupied by 3 persons for 24 hours, and as there is no direct effects on public from any of the scenarios it will be assumed that one person "as public around the PRMS and Off-Take Point" works as farmer for 1 hour / day light "Ref. to Table 33")

> Vulnerability - is the probability that exposure to the hazard will result in fatality.

<u>(Reference: Report No./DNV Reg. No.: 2013-4091/1/17 TLT 29-6 – Rev. 1)</u>

As per modeling, the IR will be calculated for the workers and the public around the PRMS and Off-Take Point (farmers around the PRS) as per the following tables (34 & 35):

PETROSAFE

Date: March 2020

Document Title: Quantitative Risk Assessment "QRA" Study For Qaha Pressure Reduction & Metering Station

Table (34) Individual Risk (IR) Calculation for PRMS Workers

Source of Event	Frequency	Heat Radiation	Vulnerability	Time Exposed	IR =
	1	kW/m ² & Overpressure	2	3	1 x 2 x 3
Gas heater (water bath heating system) 3" pipeline	1.47E-05	Explosion 0.137	0.3 (Indoor)	2 ^{2 Pers.}	8.82E-06
TOTAL Risk for Worker 8.82					

Table (35) Individual Risk (IR) Calculation for the Public Near to the PRMS

Source of Event	Frequency	Heat Radiation	Vulnerability	Time Exposed	IR =	
	1	kW/m ² & Overpressure	2	3	1 x 2 x 3	
Gas Release from 2"/4" inlet pipeline	1.46E-05	Jet Fire 12.5	0.7 (Outdoor)	0.04 ^{1 Pers.}	4.09E-07	
Gas Release from 4" off- take pipeline						
Gas Release from 4" inlet pipeline	6.45E-07	Jet Fire 12.5	0.7 (Outdoor)	0.04 ^{1 Pers.}	1.81E-08	
Gas Release from 6" outlet pipeline						
Odorant tank 1" leak	1.13E-05	Explosion 0.137	0.3 (Outdoor)	0.04 ^{1 Pers.}	1.36E-07	
	TOTAL Risk for the Public (PRMS) 5.63E-07					

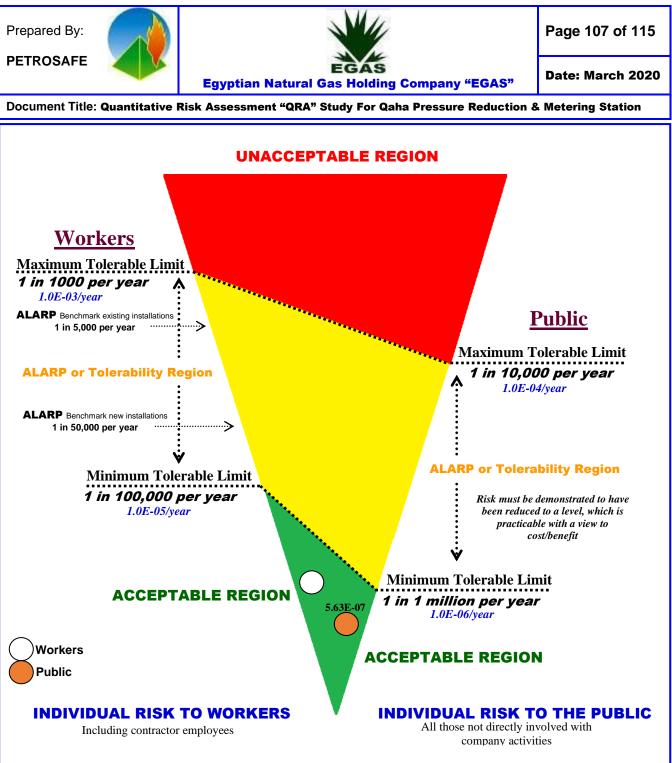


Figure (46) Evaluation of Individual Risk

The level of Individual Risk to the exposed workers at <u>Qaha</u> PRMS, based on the risk tolerability criterion used is <u>Acceptable</u>.

The level of Individual Risk to the exposed Public at <u>Qaha</u> PRMS area, based on the risk tolerability criterion used is <u>Low ALARP</u>.

Summary of Modeling Results and Conclusion

As per results from modeling the consequences of each scenario, the following table summarize the study, and as follows:

Event	Scenario	Effects
Pin hole (1") gas release 4	l" inlet pipeline	
	Gas cloud UFL LFL 50 % LFL	The modeling shows that the gas cloud effects will be limited inside the PRMS boundary.
	Heat radiation / Jet fire 9.5 kW/m ² 12.5 kW/m ²	The modeling shows that the heat radiation values will extend down and crosswind outside the PRS boundary reaching the off-take point crosswind (1.6 & 4 kW/m ²), with no effects downwind (9.5, 12.5 & 25 kW/m ²)
	Early explosion 0.020 bar 0.137 bar 0.206 bar	N/D
	Late explosion 0.020 bar 0.137 bar 0.206 bar	N/D
Half Rupture (2") gas rele	ase 4" inlet pipeline	-
	Gas cloud UFL LFL 50 % LFL	The modeling shows that the gas cloud (LFL & 50 % LFL) will extend to reach the southern fence and extend about outside. The UFL will be limited inside the PRS boundary.
	Heat radiation / Jet fire 9.5 kW/m ² 12.5 kW/m ²	The modeling shows that the values of 9.5, 12.5, 25 & 37.5 kW/m ² will extend outside the PRS southern fence downwind with no effects. The values of 9.5 & 12.5 kW/m ² will reach the off-take point crosswind
	Early explosion 0.020 bar 0.137 bar 0.206 bar	The modeling shows that the value of 0.020, 0.137 & 0.206 bar will extend outside the PRMS south fence with no effects down or crosswind.
	Late explosion 0.020 bar 0.137 bar 0.206 bar	N/D

PETROSAFE

Page 109 of 115

Date: March 2020

Event	Scenario	Effects
Full Rupture gas release	e 4" inlet pipeline	
	Gas cloud UFL LFL 50 % LFL	The modeling shows that the gas cloud effects (LFL & 50 % LFL) will extend over south boundary with no effects outside downwind.
	Heat radiation / Jet fire 9.5 kW/m ² 12.5 kW/m ²	The modeling shows that the heat radiation values 9.5, 12.5, 25 & 37.5 kW/m^2 will extend outside the south fence with no effects downwind and reach the off-take point crosswind.
	Early explosion 0.020 bar 0.137 bar 0.206 bar	The values of 0.137 & 0.206 bar will be limited inside the PRS boundary effecting the PRS facilities and off-take point and no effects on site offices.
	Late explosion 0.020 bar 0.137 bar 0.206 bar	N/D
	Heat radiation / Fireball 9.5 kW/m ² 12.5 kW/m ²	N/D
Pin hole (1") gas release	6" outlet pipeline	
	Gas cloud UFL LFL 50 % LFL	The modeling shows that the gas cloud will be limited inside the PRS boundary.
	Heat radiation / Jet fire 9.5 kW/m ² 12.5 kW/m ²	The modeling shows that the heat radiation value 1.6, 4, 9.5 & 12.5 kW/m ² effects will be limited inside the PRS boundary with no effects. The values of 25 & 37.5 kW/m ² not determined by the software due to small leakage.
	Early explosion 0.020 bar 0.137 bar 0.206 bar	N/D
	Late explosion 0.020 bar 0.137 bar 0.206 bar	N/D

PETROSAFE

Page 110 of 115

Date: March 2020

Event	Scenario	Effects
Half Rupture (3") gas r	elease 6" outlet pipeline	
	Gas cloud UFL LFL 50 % LFL Heat radiation / Jet fire 9.5 kW/m ² 12.5 kW/m ²	The modeling shows that the gas cloud (LFL & 50% LFL) will be limited inside the PRS boundary reaching the off-take point downwind. The modeling shows that the heat radiation values of 9.5 & 12.5 kW/m ² will extend outside the PRS boundary south side with no effects downwind, and covering the off-take point crosswind. The values of 25 & 37.5 kW/m ² will be limited inside the boundary effecting the PRS facilities.
	Early explosion 0.020 bar 0.137 bar 0.206 bar	The modeling shows that the value of 0.020 bar will cover the PRS and extend outside the PRS boundary with no effects outside and covering the firefighting facilities and the heater. The values of 0.137 & 0.206 bar will be limited inside the PRS boundary effecting the PRS facilities and no effects on site offices.
	Late explosion 0.020 bar 0.137 bar 0.206 bar	N/D
Full Rupture gas release	e 6" outlet pipeline	
	Gas cloud UFL LFL 50 % LFL	The modeling shows that the gas cloud effects will be limited inside the PRS boundary.
	Heat radiation / Jet fire 9.5 kW/m ² 12.5 kW/m ²	The modeling shows that the heat radiation values 9.5, 12.5, 25 & 37.5 kW/m^2 will extend outside the south fence with no effects downwind and cover the off-take point crosswind.
	Early explosion 0.020 bar 0.137 bar 0.206 bar	The modeling shows that the value of 0.020 bar will cover the PRS and extend outside the PRS boundary with no effects outside and covering the firefighting facilities and the heater. The values of 0.137 & 0.206 bar will be limited inside the PRS boundary effecting the PRS facilities and no effects on site offices.

PETROSAFE

Page 111 of 115

Date: March 2020

Event	Scenario	Effects
	Late explosion 0.020 bar 0.137 bar 0.206 bar Heat radiation / Fireball 9.5 kW/m ² 12.5 kW/m ²	<i>N/D</i> <i>The modeling shows that the heat radiation values of 1.6, 4, 9.5 & 12.5 kW/m² will limited inside the PRS boundary effecting the PRS facilities with some extension (1.6 kW/m²) down and</i>
		crosswind.
Odorant tank 1" leak	-	-
	Gas cloud UFL LFL 50 % LFL	The modeling shows that the vapor cloud will extend inside the PRS boundary reaching the off-take point downwind. Consideration should be taken when deal with liquid, vapors and smokes according to the MSDS for the material.
	Heat radiation / Jet fire 9.5 kW/m ² 12.5 kW/m ²	The modeling shows that all values of heat radiation 9.5, 12.5, 25 & 37.5 kW/m ² will be limited inside the PRS boundary down and crosswind.
	Early explosion 0.020 bar 0.137 bar 0.206 bar	N/D
	Late explosion 0.020 bar 0.137 bar 0.206 bar	The modeling shows that the value of 0.020 bar will cover the PRS facilities inside and extend outside from S/E/W sides with no effects. The values of 0.137 & 0.206 bar will extend outside the PRS boundary from south side with no effects down or crosswind.
Gas heater (water bath heater	ating system)	
	Gas cloud UFL LFL 50 % LFL	The modeling shows that the vapor cloud will extend inside the PRS boundary downwind reaching the PRS facilities.
	Heat radiation / Jet fire 9.5 kW/m ² 12.5 kW/m ²	The modeling shows that the heat radiation value 1.6, 4, 9.5 & 12.5 kW/m ² effects will be limited inside the PRS boundary with no effects. The values of 25 & 37.5 kW/m ² not determined by the software due to small leakage.

PETROSAFE

Page 112 of 115

Egyptian Natural Gas Holding Company "EGAS"

Date: March 2020

Event	Scenario	Effects
	Early explosion 0.020 bar 0.137 bar 0.206 bar	The modeling shows that the value of 0.020 bar will extend outside the PRS from all sides covering the area surrounded with no effects outside. The value of 0.137 & 0.206 bar will be limited inside the PRS and near to the control room.
	Late explosion 0.020 bar 0.137 bar 0.206 bar	N/D
Pin hole (1") gas release 4"	off-take pipeline	
	Gas cloud UFL LFL 50 % LFL	The modeling shows that the gas cloud effects will be limited inside the PRS boundary.
	Heat radiation / Jet fire 9.5 kW/m ² 12.5 kW/m ²	The modeling shows that the heat radiation value of 1.6 & 4 kW/m ² will be limited inside the PRS boundary with some extension outside from south side with no effects.
	Early explosion 0.020 bar 0.137 bar 0.206 bar	N/D
	Late explosion 0.020 bar 0.137 bar 0.206 bar	N/D
Half Rupture (2") gas relea	se 4" off-take pipeling	e
	Gas cloud UFL LFL 50 % LFL	The modeling shows that the gas cloud effects will be limited inside the PRS boundary.
	Heat radiation / Jet fire 9.5 kW/m ² 12.5 kW/m ²	The modeling shows that the heat radiation value of 1.6 & 4 kW/m ² will cover the PRS facilities and off-take point and extend outside the south and east fences down and crosswind with no effects.
	Early explosion 0.020 bar 0.137 bar 0.206 bar	N/D

PETROSAFE

Date: March 2020

Document Title: Quantitative Risk Assessment "QRA" Study For Qaha Pressure Reduction & Metering Station

Event	Scenario	Effects
	Late explosion	N/D
	0.020 bar	
	0.137 bar	
	0.206 bar	
Full Rupture gas release 4	" off-take pipeline	
	Gas cloud	The modeling shows that the gas cloud
	UFL	will be limited inside the PRS boundary
	LFL	with some extension outside from south
	50 % LFL	side downwind.
	Heat radiation / Jet	The modeling shows that the heat
	fire	radiation values will extend outside the
	9.5 kW/m^2	PRS south fence downwind with no effects
	12.5 kW/m^2	on surrounding area.
	Early explosion	N/D
	0.020 bar	
	0.137 bar	
	0.206 bar	
	Late explosion	N/D
	0.020 bar	
	0.137 bar	
	0.206 bar	
	Heat radiation /	N/D
	Fireball	
	9.5 kW/m^2	
	12.5 kW/m^2	

The previous table shows that there is some of direct effects on PRMS workers, and as there is no direct effects on public around the PRMS or the off-take point. Therefore it will be assumed that one person (as public) works as farmer for 1 hour / day light. (Refer to table 33).

Regarding to the results from risk calculations; the risk to PRMS <u>WorkersAND</u> <u>Public found in Acceptable Region</u>, so there are some points need to be considered to keep the risk tolerability and this will be describe in the following recommendations. PETROSAFE

Page 114 of 115

Date: March 2020

Document Title: Quantitative Risk Assessment "QRA" Study For Qaha Pressure Reduction & Metering Station

Recommendations

Regarding to the modeling scenarios and risk calculations to workers / public which found in <u>Acceptable region (workers and public)</u>, therefore there are some points need to be considered to maintain the risk tolerability in its region and this will be describe in the following recommendations:

Recommendation	Timeline Phases	Egypt Gas Remarks
• Ensure that		
- All PRMS facilities specifications referred to the national and international codes and standards.	Design	
- Inspection and maintenance plans and programs are according to the manufacturers guidelines to keep all facility parts in a good condition.	Operation	
- All operations are according to standard operating procedures for the PRMS operations and training programs in-place for operators.	Operation	
- Emergency shutdown detailed procedure including emergency gas isolation points at the PRMS and Off-Take Point in place.	Operation	
- Surface drainage system is suitable for containment any odorant spillage.	Design	
• Considering that all electrical equipment, facilities and connections are according to the hazardous area classification for natural gas facilities.	Design	
• Preparing an emergency response plan and for the PRS including all scenarios in this study and other needs like: (Not Provided by EG)	Operation	
- Firefighting brigades, mutual aids, emergency communications and fire detection / protection systems.	Operation	
- Dealing with the external road in case of major fires.	Operation	

PETROSAFE

Page 115 of 115

Date: March 2020

Recommendation	Timeline Phases	Egypt Gas Remarks
- First aid including dealing with the odorant according to the MSDS for it, with respect of means of water supply for emergency showers, eye washers and cleaning.	Operation	
- Safe exits in building according to the modeling in this study, and to the PRS from other side beside the designed exit in layout provided.	Design	
• Provide the site with SCBA "Self-Contained Breathing Apparatus (at least two sets) and arrange training programs for operators.	Operation	
• Provide a suitable tool for wind direction (Windsock) to be installed in a suitable place to determine the wind direction <u>(the PRMS lay-out</u> <u>need to be reviewed for correction of the</u> <u>North direction</u>)	Construction	
• Cooperation should be done with the concerned parties before planning for housing projects around the PRMS area.	Operation / Design / Construction	